-
4
-
-
0034389477
-
Increment-based estimators of fractal dimension for two-dimensional surface data
-
CHAN, G. and WOOD, A. T. A. (2000). Increment-based estimators of fractal dimension for two-dimensional surface data. Statist. Sinica 10 343-376.
-
(2000)
Statist. Sinica
, vol.10
, pp. 343-376
-
-
Chan, G.1
Wood, A.T.A.2
-
7
-
-
0017558676
-
The Shannon sampling theorem - Its various extensions and applications: A tutorial review
-
JERRI, A. J. (1977). The Shannon sampling theorem - its various extensions and applications: A tutorial review. Proc. IEEE 65 1565-1596.
-
(1977)
Proc. IEEE
, vol.65
, pp. 1565-1596
-
-
Jerri, A.J.1
-
9
-
-
14244255625
-
Estimating the fractal dimension of a locally self-similar Gaussian process by using increments
-
KENT, J. T. and WOOD, A. T. A. (1997). Estimating the fractal dimension of a locally self-similar Gaussian process by using increments. J. Roy. Statist. Soc. Ser. B 59 679-699.
-
(1997)
J. Roy. Statist. Soc. Ser. B
, vol.59
, pp. 679-699
-
-
Kent, J.T.1
Wood, A.T.A.2
-
10
-
-
1542285696
-
Self-affine time series: I. Generation and analysis
-
(R. Dmowska and B. Saltzman, eds.). Academic Press, New York
-
MALAMUD, B. D. and TURCOTTE, D. L. (1999). Self-affine time series: I. Generation and analysis. In Advances in Geophysics (R. Dmowska and B. Saltzman, eds.) 40 1-90. Academic Press, New York.
-
(1999)
Advances in Geophysics
, vol.40
, pp. 1-90
-
-
Malamud, B.D.1
Turcotte, D.L.2
-
12
-
-
0000501589
-
Fractional Brownian motions, fractional noises and applications
-
MANDELBROT, B. B. and VAN NESS, J. W. (1968). Fractional Brownian motions, fractional noises and applications, SIAM Rev. 10 422-437.
-
(1968)
SIAM Rev.
, vol.10
, pp. 422-437
-
-
Mandelbrot, B.B.1
Van Ness, J.W.2
-
14
-
-
0030868938
-
Fractional Brownian motion and fractional Gaussian noise in subsurface hydrology: A review, presentation of fundamental properties, and extensions
-
MOLZ, F. J., LIU, H. H. and SZULGA, J. (1997). Fractional Brownian motion and fractional Gaussian noise in subsurface hydrology: A review, presentation of fundamental properties, and extensions. Water Resources Research 33 2273-2286.
-
(1997)
Water Resources Research
, vol.33
, pp. 2273-2286
-
-
Molz, F.J.1
Liu, H.H.2
Szulga, J.3
-
15
-
-
0002981310
-
Algorithms for random fractals
-
(H.-O. Peitgen and D. Saupe, eds.). Springer, New York
-
SAUPE, D. (1988). Algorithms for random fractals. In The Science of Fractal Images (H.-O. Peitgen and D. Saupe, eds.) 71-136. Springer, New York.
-
(1988)
The Science of Fractal Images
, pp. 71-136
-
-
Saupe, D.1
-
16
-
-
0000326721
-
Cardinal interpolation and spline functions
-
SCHOENBERG, I. J. (1969). Cardinal interpolation and spline functions. J. Approx. Theory 2 167-206.
-
(1969)
J. Approx. Theory
, vol.2
, pp. 167-206
-
-
Schoenberg, I.J.1
-
17
-
-
0001761150
-
Uniform asymptotic optimality of linear predictions of a random field using an incorrect second-order structure
-
STEIN, M. L. (1990). Uniform asymptotic optimality of linear predictions of a random field using an incorrect second-order structure. Ann. Statist. 18 850-872.
-
(1990)
Ann. Statist.
, vol.18
, pp. 850-872
-
-
Stein, M.L.1
-
19
-
-
0042613248
-
Some asymptotic properties of kriging when the covariance function is misspecified
-
STEIN, M. L. and HANDCOCK, M. S. (1989). Some asymptotic properties of kriging when the covariance function is misspecified. Math. Geol. 21 171-190.
-
(1989)
Math. Geol.
, vol.21
, pp. 171-190
-
-
Stein, M.L.1
Handcock, M.S.2
|