메뉴 건너뛰기




Volumn 30, Issue 1, 2002, Pages 298-323

The screening effect in kriging

Author keywords

Asymptotics; Best linear prediction; Random field; Regular variation; Self affine; Self similar

Indexed keywords


EID: 0036100910     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/aos/1015362194     Document Type: Article
Times cited : (77)

References (21)
  • 4
    • 0034389477 scopus 로고    scopus 로고
    • Increment-based estimators of fractal dimension for two-dimensional surface data
    • CHAN, G. and WOOD, A. T. A. (2000). Increment-based estimators of fractal dimension for two-dimensional surface data. Statist. Sinica 10 343-376.
    • (2000) Statist. Sinica , vol.10 , pp. 343-376
    • Chan, G.1    Wood, A.T.A.2
  • 7
    • 0017558676 scopus 로고
    • The Shannon sampling theorem - Its various extensions and applications: A tutorial review
    • JERRI, A. J. (1977). The Shannon sampling theorem - its various extensions and applications: A tutorial review. Proc. IEEE 65 1565-1596.
    • (1977) Proc. IEEE , vol.65 , pp. 1565-1596
    • Jerri, A.J.1
  • 9
    • 14244255625 scopus 로고    scopus 로고
    • Estimating the fractal dimension of a locally self-similar Gaussian process by using increments
    • KENT, J. T. and WOOD, A. T. A. (1997). Estimating the fractal dimension of a locally self-similar Gaussian process by using increments. J. Roy. Statist. Soc. Ser. B 59 679-699.
    • (1997) J. Roy. Statist. Soc. Ser. B , vol.59 , pp. 679-699
    • Kent, J.T.1    Wood, A.T.A.2
  • 10
    • 1542285696 scopus 로고    scopus 로고
    • Self-affine time series: I. Generation and analysis
    • (R. Dmowska and B. Saltzman, eds.). Academic Press, New York
    • MALAMUD, B. D. and TURCOTTE, D. L. (1999). Self-affine time series: I. Generation and analysis. In Advances in Geophysics (R. Dmowska and B. Saltzman, eds.) 40 1-90. Academic Press, New York.
    • (1999) Advances in Geophysics , vol.40 , pp. 1-90
    • Malamud, B.D.1    Turcotte, D.L.2
  • 12
    • 0000501589 scopus 로고
    • Fractional Brownian motions, fractional noises and applications
    • MANDELBROT, B. B. and VAN NESS, J. W. (1968). Fractional Brownian motions, fractional noises and applications, SIAM Rev. 10 422-437.
    • (1968) SIAM Rev. , vol.10 , pp. 422-437
    • Mandelbrot, B.B.1    Van Ness, J.W.2
  • 14
    • 0030868938 scopus 로고    scopus 로고
    • Fractional Brownian motion and fractional Gaussian noise in subsurface hydrology: A review, presentation of fundamental properties, and extensions
    • MOLZ, F. J., LIU, H. H. and SZULGA, J. (1997). Fractional Brownian motion and fractional Gaussian noise in subsurface hydrology: A review, presentation of fundamental properties, and extensions. Water Resources Research 33 2273-2286.
    • (1997) Water Resources Research , vol.33 , pp. 2273-2286
    • Molz, F.J.1    Liu, H.H.2    Szulga, J.3
  • 15
    • 0002981310 scopus 로고
    • Algorithms for random fractals
    • (H.-O. Peitgen and D. Saupe, eds.). Springer, New York
    • SAUPE, D. (1988). Algorithms for random fractals. In The Science of Fractal Images (H.-O. Peitgen and D. Saupe, eds.) 71-136. Springer, New York.
    • (1988) The Science of Fractal Images , pp. 71-136
    • Saupe, D.1
  • 16
    • 0000326721 scopus 로고
    • Cardinal interpolation and spline functions
    • SCHOENBERG, I. J. (1969). Cardinal interpolation and spline functions. J. Approx. Theory 2 167-206.
    • (1969) J. Approx. Theory , vol.2 , pp. 167-206
    • Schoenberg, I.J.1
  • 17
    • 0001761150 scopus 로고
    • Uniform asymptotic optimality of linear predictions of a random field using an incorrect second-order structure
    • STEIN, M. L. (1990). Uniform asymptotic optimality of linear predictions of a random field using an incorrect second-order structure. Ann. Statist. 18 850-872.
    • (1990) Ann. Statist. , vol.18 , pp. 850-872
    • Stein, M.L.1
  • 19
    • 0042613248 scopus 로고
    • Some asymptotic properties of kriging when the covariance function is misspecified
    • STEIN, M. L. and HANDCOCK, M. S. (1989). Some asymptotic properties of kriging when the covariance function is misspecified. Math. Geol. 21 171-190.
    • (1989) Math. Geol. , vol.21 , pp. 171-190
    • Stein, M.L.1    Handcock, M.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.