메뉴 건너뛰기




Volumn 50, Issue 2, 2002, Pages 133-142

On spectral integral variations of graphs

Author keywords

Laplacian integral; M matrix; Matrix tree theorem; Spectral integral variation; Spectrum

Indexed keywords


EID: 0036005483     PISSN: 03081087     EISSN: None     Source Type: Journal    
DOI: 10.1080/03081080290019513     Document Type: Article
Times cited : (30)

References (10)
  • 4
    • 0010665231 scopus 로고
    • Lower bounds for the first eigenvalue of certain M-matrices associated with graphs
    • S. Friedland (1992). Lower bounds for the first eigenvalue of certain M-matrices associated with graphs. Linear Algebra Appl., 172, 71-84.
    • (1992) Linear Algebra Appl. , vol.172 , pp. 71-84
    • Friedland, S.1
  • 5
    • 0040350301 scopus 로고    scopus 로고
    • On the second real eigenvalue of nonnegative and Z-matrices
    • S. Friedland and R. Nabben (1997). On the second real eigenvalue of nonnegative and Z-matrices. Linear Algebra Appl., 255, 303-313.
    • (1997) Linear Algebra Appl. , vol.255 , pp. 303-313
    • Friedland, S.1    Nabben, R.2
  • 7
    • 21344494513 scopus 로고
    • Degree maximal graphs are Laplacian integral
    • R. Merris (1994). Degree maximal graphs are Laplacian integral. Linear Algebra Appl., 199, 381-389.
    • (1994) Linear Algebra Appl. , vol.199 , pp. 381-389
    • Merris, R.1
  • 8
    • 11544285071 scopus 로고    scopus 로고
    • Laplacian graph eigenvectors
    • R. Merris (1998). Laplacian graph eigenvectors. Linear Algebra Appl., 278, 221-236.
    • (1998) Linear Algebra Appl. , vol.278 , pp. 221-236
    • Merris, R.1
  • 9
    • 0001216057 scopus 로고
    • The Laplacian spectrum of graphs
    • Y. Alavi et al. (Eds.), Wiley, New York
    • B. Mohar (1991). The Laplacian spectrum of graphs. In: Y. Alavi et al. (Eds.), Graph Theory, Combinatorics, and Applications, pp. 871-898. Wiley, New York.
    • (1991) Graph Theory, Combinatorics, and Applications , pp. 871-898
    • Mohar, B.1
  • 10
    • 0010712604 scopus 로고    scopus 로고
    • Rank one perturbation and its application to Laplacian spectrum of a graph
    • W. So (1999). Rank one perturbation and its application to Laplacian spectrum of a graph. Linear Algebra and Multilinear Algebra, 46, 193-198.
    • (1999) Linear Algebra and Multilinear Algebra , vol.46 , pp. 193-198
    • So, W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.