메뉴 건너뛰기




Volumn 46, Issue 3, 1999, Pages 193-198

Rank one perturbation and its application to the Laplacian spectrum of a graph

Author keywords

Laplacian integral; Perturbation

Indexed keywords


EID: 0010712604     PISSN: 03081087     EISSN: None     Source Type: Journal    
DOI: 10.1080/03081089908818613     Document Type: Article
Times cited : (57)

References (7)
  • 1
    • 26444539494 scopus 로고
    • On the geometry and Laplacian of a graph
    • Grone, R. (1991). On the geometry and Laplacian of a graph, Linear Algebra Appl., 150, 167-178.
    • (1991) Linear Algebra Appl. , vol.150 , pp. 167-178
    • Grone, R.1
  • 2
    • 0000530103 scopus 로고
    • The Laplacian spectrum of a graph II
    • Grone, R. and Merris, R. (1994). The Laplacian spectrum of a graph II, SIAM J. Discrete Math., 7, 221-229.
    • (1994) SIAM J. Discrete Math. , vol.7 , pp. 221-229
    • Grone, R.1    Merris, R.2
  • 4
    • 0016219514 scopus 로고
    • Which graphs have integral spectra?
    • (Bari, R. A. and Harary, F., Eds.), Springer-Verlag
    • Harary, F. and Schwenk, A. J. (1974). Which graphs have integral spectra? In: Graphs and Combinatorics (Bari, R. A. and Harary, F., Eds.), Springer-Verlag.
    • (1974) Graphs and Combinatorics
    • Harary, F.1    Schwenk, A.J.2
  • 6
    • 33750999449 scopus 로고
    • Laplacian matrices of graphs: A survey
    • Merris, R. (1994). Laplacian matrices of graphs: A survey, Linear Algebra Appl., 197 & 198, 143-176.
    • (1994) Linear Algebra Appl. , vol.197-198 , pp. 143-176
    • Merris, R.1
  • 7
    • 21344494513 scopus 로고
    • Degree maximal graphs are Laplacian integral
    • Merris, R. (1994). Degree maximal graphs are Laplacian integral, Linear Algebra Appl., 199, 381-389.
    • (1994) Linear Algebra Appl. , vol.199 , pp. 381-389
    • Merris, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.