-
1
-
-
0040435681
-
Bi-differential calculi and integrable models
-
Dimakis A and Müller-Hoissen F 2000 Bi-differential calculi and integrable models J. Phys. A: Math. Gen. 33 957-74 Dimakis A and Müller-Hoissen F 2000 Bicomplexes and integrable models J. Phys. A: Math. Gen. 33 6579-91
-
(2000)
J. Phys. A: Math. Gen.
, vol.33
, pp. 957-974
-
-
Dimakis, A.1
Müller-Hoissen, F.2
-
2
-
-
0040435634
-
Bicomplexes and integrable models
-
Dimakis A and Müller-Hoissen F 2000 Bi-differential calculi and integrable models J. Phys. A: Math. Gen. 33 957-74 Dimakis A and Müller-Hoissen F 2000 Bicomplexes and integrable models J. Phys. A: Math. Gen. 33 6579-91
-
(2000)
J. Phys. A: Math. Gen.
, vol.33
, pp. 6579-6591
-
-
Dimakis, A.1
Müller-Hoissen, F.2
-
3
-
-
0001565837
-
Nonlinear Schrödinger equations and simple Lie algebras
-
Fordy A P and Kulish P P 1983 Nonlinear Schrödinger equations and simple Lie algebras Commun. Math. Phys. 89 427-13
-
(1983)
Commun. Math. Phys.
, vol.89
, pp. 427-513
-
-
Fordy, A.P.1
Kulish, P.P.2
-
4
-
-
0000004129
-
More on generalized Heisenberg ferromagnet models
-
Oh P and Park Q-H 1996 More on generalized Heisenberg ferromagnet models Phys. Lett. B 383 333-8 Terng C L and Uhlenbeck K 1999 Schrödinger flows on Grassmannians Preprint math.DG/9901086
-
(1996)
Phys. Lett. B
, vol.383
, pp. 333-338
-
-
Oh, P.1
Park, Q.-H.2
-
6
-
-
0008930293
-
Derivative nonlinear Schrödinger equations and Hermitian symmetric spaces
-
Fordy A P 1984 Derivative nonlinear Schrödinger equations and Hermitian symmetric spaces J. Phys. A: Math. Gen. 17 1235-45 Olver P J and Sokolov V V 1998 Non-Abelian integrable systems of the nonlinear Schrödinger type Inverse Problems 14 L5-8 Tsuchida T and Wadati M 1999 Complete integrability of derivative nonlinear Schrödinger equations Inverse Problems 15 1363-73 Porsezian K 1997 Completely integrable nonlinear Schrödinger type equations on moving space curves Phys. Rev. E 55 3785-8 Porsezian K 1998 Nonlinear Schrödinger family on moving space curves: Lax pairs, soliton solution and equivalent spin chains Chaos Solitons Fractals 9 1709-22
-
(1984)
J. Phys. A: Math. Gen.
, vol.17
, pp. 1235-1245
-
-
Fordy, A.P.1
-
7
-
-
0002775872
-
Non-Abelian integrable systems of the nonlinear Schrödinger type
-
Fordy A P 1984 Derivative nonlinear Schrödinger equations and Hermitian symmetric spaces J. Phys. A: Math. Gen. 17 1235-45 Olver P J and Sokolov V V 1998 Non-Abelian integrable systems of the nonlinear Schrödinger type Inverse Problems 14 L5-8 Tsuchida T and Wadati M 1999 Complete integrability of derivative nonlinear Schrödinger equations Inverse Problems 15 1363-73 Porsezian K 1997 Completely integrable nonlinear Schrödinger type equations on moving space curves Phys. Rev. E 55 3785-8 Porsezian K 1998 Nonlinear Schrödinger family on moving space curves: Lax pairs, soliton solution and equivalent spin chains Chaos Solitons Fractals 9 1709-22
-
(1998)
Inverse Problems
, vol.14
-
-
Olver, P.J.1
Sokolov, V.V.2
-
8
-
-
0001179883
-
Complete integrability of derivative nonlinear Schrödinger equations
-
Fordy A P 1984 Derivative nonlinear Schrödinger equations and Hermitian symmetric spaces J. Phys. A: Math. Gen. 17 1235-45 Olver P J and Sokolov V V 1998 Non-Abelian integrable systems of the nonlinear Schrödinger type Inverse Problems 14 L5-8 Tsuchida T and Wadati M 1999 Complete integrability of derivative nonlinear Schrödinger equations Inverse Problems 15 1363-73 Porsezian K 1997 Completely integrable nonlinear Schrödinger type equations on moving space curves Phys. Rev. E 55 3785-8 Porsezian K 1998 Nonlinear Schrödinger family on moving space curves: Lax pairs, soliton solution and equivalent spin chains Chaos Solitons Fractals 9 1709-22
-
(1999)
Inverse Problems
, vol.15
, pp. 1363-1373
-
-
Tsuchida, T.1
Wadati, M.2
-
9
-
-
0009217681
-
Completely integrable nonlinear Schrödinger type equations on moving space curves
-
Fordy A P 1984 Derivative nonlinear Schrödinger equations and Hermitian symmetric spaces J. Phys. A: Math. Gen. 17 1235-45 Olver P J and Sokolov V V 1998 Non-Abelian integrable systems of the nonlinear Schrödinger type Inverse Problems 14 L5-8 Tsuchida T and Wadati M 1999 Complete integrability of derivative nonlinear Schrödinger equations Inverse Problems 15 1363-73 Porsezian K 1997 Completely integrable nonlinear Schrödinger type equations on moving space curves Phys. Rev. E 55 3785-8 Porsezian K 1998 Nonlinear Schrödinger family on moving space curves: Lax pairs, soliton solution and equivalent spin chains Chaos Solitons Fractals 9 1709-22
-
(1997)
Phys. Rev. E
, vol.55
, pp. 3785-3788
-
-
Porsezian, K.1
-
10
-
-
0032183267
-
Nonlinear Schrödinger family on moving space curves: Lax pairs, soliton solution and equivalent spin chains
-
Fordy A P 1984 Derivative nonlinear Schrödinger equations and Hermitian symmetric spaces J. Phys. A: Math. Gen. 17 1235-45 Olver P J and Sokolov V V 1998 Non-Abelian integrable systems of the nonlinear Schrödinger type Inverse Problems 14 L5-8 Tsuchida T and Wadati M 1999 Complete integrability of derivative nonlinear Schrödinger equations Inverse Problems 15 1363-73 Porsezian K 1997 Completely integrable nonlinear Schrödinger type equations on moving space curves Phys. Rev. E 55 3785-8 Porsezian K 1998 Nonlinear Schrödinger family on moving space curves: Lax pairs, soliton solution and equivalent spin chains Chaos Solitons Fractals 9 1709-22
-
(1998)
Chaos Solitons Fractals
, vol.9
, pp. 1709-1722
-
-
Porsezian, K.1
-
11
-
-
0039449915
-
Integrable equations in (2 + 1) dimensions associated with symmetric and homogeneous spaces
-
Athorne C and Fordy A 1987 Integrable equations in (2 + 1) dimensions associated with symmetric and homogeneous spaces J. Math. Phys. 28 2018-24
-
(1987)
J. Math. Phys.
, vol.28
, pp. 2018-2024
-
-
Athorne, C.1
Fordy, A.2
-
12
-
-
0002119151
-
Multi-vortex solutions of a two-dimensional nonlinear wave equation
-
Ishimori Y 1984 Multi-vortex solutions of a two-dimensional nonlinear wave equation Prog. Theor. Phys. 72 33-7 Cheng Y, Li Y-S and Tang G-X 1990 The gauge equivalence of the Davey-Stewartson equation and (2 + 1)- dimensional continuous Heisenberg ferromagnetic model J. Phys. A: Math. Gen. 23 L473-7 Konopelchenko B G 1993 Solitons in Multidimensions: Inverse Spectral Transform Method (Singapore: World Scientific) Chakravarty S, Kent S L and Newman E T 1995 Some reductions of the self-dual Yang-Mills equations to integrable systems in 2 + 1 dimensions J. Math. Phys. 36 763-72 Radha R and Lakshmanan M 1999 Generalized dromions in the (2 + 1) dimensional long dispersive wave (2LDW) and scalar nonlinear Schrödinger (NLS) equations Chaos Solitons Fractals 10 1821-4
-
(1984)
Prog. Theor. Phys.
, vol.72
, pp. 33-37
-
-
Ishimori, Y.1
-
13
-
-
0039205066
-
The gauge equivalence of the Davey-Stewartson equation and (2 + 1)-dimensional continuous Heisenberg ferromagnetic model
-
Ishimori Y 1984 Multi-vortex solutions of a two-dimensional nonlinear wave equation Prog. Theor. Phys. 72 33-7 Cheng Y, Li Y-S and Tang G-X 1990 The gauge equivalence of the Davey-Stewartson equation and (2 + 1)-dimensional continuous Heisenberg ferromagnetic model J. Phys. A: Math. Gen. 23 L473-7 Konopelchenko B G 1993 Solitons in Multidimensions: Inverse Spectral Transform Method (Singapore: World Scientific) Chakravarty S, Kent S L and Newman E T 1995 Some reductions of the self-dual Yang-Mills equations to integrable systems in 2 + 1 dimensions J. Math. Phys. 36 763-72 Radha R and Lakshmanan M 1999 Generalized dromions in the (2 + 1) dimensional long dispersive wave (2LDW) and scalar nonlinear Schrödinger (NLS) equations Chaos Solitons Fractals 10 1821-4
-
(1990)
J. Phys. A: Math. Gen.
, vol.23
-
-
Cheng, Y.1
Li, Y.-S.2
Tang, G.-X.3
-
14
-
-
0003800691
-
-
Singapore: World Scientific
-
Ishimori Y 1984 Multi-vortex solutions of a two-dimensional nonlinear wave equation Prog. Theor. Phys. 72 33-7 Cheng Y, Li Y-S and Tang G-X 1990 The gauge equivalence of the Davey-Stewartson equation and (2 + 1)- dimensional continuous Heisenberg ferromagnetic model J. Phys. A: Math. Gen. 23 L473-7 Konopelchenko B G 1993 Solitons in Multidimensions: Inverse Spectral Transform Method (Singapore: World Scientific) Chakravarty S, Kent S L and Newman E T 1995 Some reductions of the self-dual Yang-Mills equations to integrable systems in 2 + 1 dimensions J. Math. Phys. 36 763-72 Radha R and Lakshmanan M 1999 Generalized dromions in the (2 + 1) dimensional long dispersive wave (2LDW) and scalar nonlinear Schrödinger (NLS) equations Chaos Solitons Fractals 10 1821-4
-
(1993)
Solitons in Multidimensions: Inverse Spectral Transform Method
-
-
Konopelchenko, B.G.1
-
15
-
-
21844489136
-
Some reductions of the self-dual Yang-Mills equations to integrable systems in 2 + 1 dimensions
-
Ishimori Y 1984 Multi-vortex solutions of a two-dimensional nonlinear wave equation Prog. Theor. Phys. 72 33-7 Cheng Y, Li Y-S and Tang G-X 1990 The gauge equivalence of the Davey-Stewartson equation and (2 + 1)- dimensional continuous Heisenberg ferromagnetic model J. Phys. A: Math. Gen. 23 L473-7 Konopelchenko B G 1993 Solitons in Multidimensions: Inverse Spectral Transform Method (Singapore: World Scientific) Chakravarty S, Kent S L and Newman E T 1995 Some reductions of the self-dual Yang-Mills equations to integrable systems in 2 + 1 dimensions J. Math. Phys. 36 763-72 Radha R and Lakshmanan M 1999 Generalized dromions in the (2 + 1) dimensional long dispersive wave (2LDW) and scalar nonlinear Schrödinger (NLS) equations Chaos Solitons Fractals 10 1821-4
-
(1995)
J. Math. Phys.
, vol.36
, pp. 763-772
-
-
Chakravarty, S.1
Kent, S.L.2
Newman, E.T.3
-
16
-
-
0032866784
-
Generalized dromions in the (2 + 1) dimensional long dispersive wave (2LDW) and scalar nonlinear Schrödinger (NLS) equations
-
Ishimori Y 1984 Multi-vortex solutions of a two-dimensional nonlinear wave equation Prog. Theor. Phys. 72 33-7 Cheng Y, Li Y-S and Tang G-X 1990 The gauge equivalence of the Davey-Stewartson equation and (2 + 1)- dimensional continuous Heisenberg ferromagnetic model J. Phys. A: Math. Gen. 23 L473-7 Konopelchenko B G 1993 Solitons in Multidimensions: Inverse Spectral Transform Method (Singapore: World Scientific) Chakravarty S, Kent S L and Newman E T 1995 Some reductions of the self-dual Yang-Mills equations to integrable systems in 2 + 1 dimensions J. Math. Phys. 36 763-72 Radha R and Lakshmanan M 1999 Generalized dromions in the (2 + 1) dimensional long dispersive wave (2LDW) and scalar nonlinear Schrödinger (NLS) equations Chaos Solitons Fractals 10 1821-4
-
(1999)
Chaos Solitons Fractals
, vol.10
, pp. 1821-1824
-
-
Radha, R.1
Lakshmanan, M.2
-
17
-
-
0032371403
-
On the simplest (2 + 1) dimensional integrable spin systems and their equivalent Schrödinger equations
-
Myrzakulov R, Vijayalakshmi S, Syzdykova R N and Lakshmanan M 1998 On the simplest (2 + 1) dimensional integrable spin systems and their equivalent Schrödinger equations J. Math. Phys. 39 2122-40 Myrzakulov R, Nugmanova G N and Syzdykova R N 1998 Gauge equivalence between (2 + 1)-dimensional continuous Heisenberg ferromagnetic models and nonlinear Schrödinger-type equations J. Phys. A: Math. Gen. 31 9535-45 Ding Q 1999 The gauge equivalence of the NLS and the Schrödinger flow of maps in 2 + 1 dimensions J. Phys. A: Math. Gen. 32 5087-96
-
(1998)
J. Math. Phys.
, vol.39
, pp. 2122-2140
-
-
Myrzakulov, R.1
Vijayalakshmi, S.2
Syzdykova, R.N.3
Lakshmanan, M.4
-
18
-
-
0032573322
-
Gauge equivalence between (2 + 1)-dimensional continuous Heisenberg ferromagnetic models and nonlinear Schrödinger-type equations
-
Myrzakulov R, Vijayalakshmi S, Syzdykova R N and Lakshmanan M 1998 On the simplest (2 + 1) dimensional integrable spin systems and their equivalent Schrödinger equations J. Math. Phys. 39 2122-40 Myrzakulov R, Nugmanova G N and Syzdykova R N 1998 Gauge equivalence between (2 + 1)-dimensional continuous Heisenberg ferromagnetic models and nonlinear Schrödinger-type equations J. Phys. A: Math. Gen. 31 9535-45 Ding Q 1999 The gauge equivalence of the NLS and the Schrödinger flow of maps in 2 + 1 dimensions J. Phys. A: Math. Gen. 32 5087-96
-
(1998)
J. Phys. A: Math. Gen.
, vol.31
, pp. 9535-9545
-
-
Myrzakulov, R.1
Nugmanova, G.N.2
Syzdykova, R.N.3
-
19
-
-
0033538404
-
The gauge equivalence of the NLS and the Schrödinger flow of maps in 2 + 1 dimensions
-
Myrzakulov R, Vijayalakshmi S, Syzdykova R N and Lakshmanan M 1998 On the simplest (2 + 1) dimensional integrable spin systems and their equivalent Schrödinger equations J. Math. Phys. 39 2122-40 Myrzakulov R, Nugmanova G N and Syzdykova R N 1998 Gauge equivalence between (2 + 1)-dimensional continuous Heisenberg ferromagnetic models and nonlinear Schrödinger-type equations J. Phys. A: Math. Gen. 31 9535-45 Ding Q 1999 The gauge equivalence of the NLS and the Schrödinger flow of maps in 2 + 1 dimensions J. Phys. A: Math. Gen. 32 5087-96
-
(1999)
J. Phys. A: Math. Gen.
, vol.32
, pp. 5087-5096
-
-
Ding, Q.1
-
20
-
-
0001693887
-
The inverse scattering method
-
ed R K Bullough and P J Caudrey (Berlin: Springer)
-
Zakharov V E 1980 The inverse scattering method Solitons ed R K Bullough and P J Caudrey (Berlin: Springer) pp 243-85 Strachan I A B 1993 Some integrable hierarchies in (2 + 1) dimensions and their twistor description J. Math. Phys. 34 243-59 Myrzakulov R, Vijayalakshmi S, Nugmanova G N and Lakshmanan M 1997 A (2 + 1) dimensional integrable spin model: geometrical and gauge equivalent counterpart, solitons and localized coherent structures Phys. Lett. A 233 391-6
-
(1980)
Solitons
, pp. 243-285
-
-
Zakharov, V.E.1
-
21
-
-
21144471020
-
Some integrable hierarchies in (2 + 1) dimensions and their twistor description
-
Zakharov V E 1980 The inverse scattering method Solitons ed R K Bullough and P J Caudrey (Berlin: Springer) pp 243-85 Strachan I A B 1993 Some integrable hierarchies in (2 + 1) dimensions and their twistor description J. Math. Phys. 34 243-59 Myrzakulov R, Vijayalakshmi S, Nugmanova G N and Lakshmanan M 1997 A (2 + 1) dimensional integrable spin model: geometrical and gauge equivalent counterpart, solitons and localized coherent structures Phys. Lett. A 233 391-6
-
(1993)
J. Math. Phys.
, vol.34
, pp. 243-259
-
-
Strachan, I.A.B.1
-
22
-
-
0001693887
-
A (2 + 1) dimensional integrable spin model: Geometrical and gauge equivalent counterpart, solitons and localized coherent structures
-
Zakharov V E 1980 The inverse scattering method Solitons ed R K Bullough and P J Caudrey (Berlin: Springer) pp 243-85 Strachan I A B 1993 Some integrable hierarchies in (2 + 1) dimensions and their twistor description J. Math. Phys. 34 243-59 Myrzakulov R, Vijayalakshmi S, Nugmanova G N and Lakshmanan M 1997 A (2 + 1) dimensional integrable spin model: geometrical and gauge equivalent counterpart, solitons and localized coherent structures Phys. Lett. A 233 391-6
-
(1997)
Phys. Lett. A
, vol.233
, pp. 391-396
-
-
Myrzakulov, R.1
Vijayalakshmi, S.2
Nugmanova, G.N.3
Lakshmanan, M.4
-
23
-
-
33744769996
-
Deformation theory and quantization I, II
-
Bayen F, Flato M, Fronsdal C, Lichnerowicz A and Sternheimer D 1978 Deformation theory and quantization I, II Ann. Phys., NY 111 61-151
-
(1978)
Ann. Phys., NY
, vol.111
, pp. 61-151
-
-
Bayen, F.1
Flato, M.2
Fronsdal, C.3
Lichnerowicz, A.4
Sternheimer, D.5
-
24
-
-
0039943307
-
Anti-self dual Yang-Mills equations on noncommutative space-time
-
Takasaki K 2001 Anti-self dual Yang-Mills equations on noncommutative space-time J. Geom. Phys. 37 291-306 (Takasaki K 2000 Preprint hep-th/0005194)
-
(2001)
J. Geom. Phys.
, vol.37
, pp. 291-306
-
-
Takasaki, K.1
-
25
-
-
0039943307
-
-
Preprint hep-th/0005194
-
Takasaki K 2001 Anti-self dual Yang-Mills equations on noncommutative space-time J. Geom. Phys. 37 291-306 (Takasaki K 2000 Preprint hep-th/0005194)
-
(2000)
-
-
Takasaki, K.1
-
27
-
-
0034692276
-
Bicomplexes, integrable models, and noncommutative geometry
-
Dimakis A and Müller-Hoissen F 2000 Bicomplexes, integrable models, and noncommutative geometry Int. J. Mod. Phys. B 14 2455-60 (Dimakis A and Müller-Hoissen F 2000 Preprint hep-th/0006005) Dimakis A and Müller-Hoissen F 2000 The Korteweg-de-Vries equation on a noncommutative space-time Phys. Lett. A 278 139-45 (Dimakis A and Müller-Hoissen F 2000 Preprint hep-th/0007074) Dimakis A and Müller-Hoissen F 2000 Moyal deformation, Seiberg-Witten map, and integrable models Lett. Math. Phys. 195 157-78 (Dimakis A and Müller-Hoissen F 2000 Preprint hep-th/0007160)
-
(2000)
Int. J. Mod. Phys. B
, vol.14
, pp. 2455-2460
-
-
Dimakis, A.1
Müller-Hoissen, F.2
-
28
-
-
0034692276
-
-
Preprint hep-th/0006005
-
Dimakis A and Müller-Hoissen F 2000 Bicomplexes, integrable models, and noncommutative geometry Int. J. Mod. Phys. B 14 2455-60 (Dimakis A and Müller-Hoissen F 2000 Preprint hep-th/0006005) Dimakis A and Müller-Hoissen F 2000 The Korteweg-de-Vries equation on a noncommutative space-time Phys. Lett. A 278 139-45 (Dimakis A and Müller-Hoissen F 2000 Preprint hep-th/0007074) Dimakis A and Müller-Hoissen F 2000 Moyal deformation, Seiberg-Witten map, and integrable models Lett. Math. Phys. 195 157-78 (Dimakis A and Müller-Hoissen F 2000 Preprint hep-th/0007160)
-
(2000)
-
-
Dimakis, A.1
Müller-Hoissen, F.2
-
29
-
-
0039117960
-
The Korteweg-de-Vries equation on a noncommutative space-time
-
Dimakis A and Müller-Hoissen F 2000 Bicomplexes, integrable models, and noncommutative geometry Int. J. Mod. Phys. B 14 2455-60 (Dimakis A and Müller-Hoissen F 2000 Preprint hep-th/0006005) Dimakis A and Müller-Hoissen F 2000 The Korteweg-de-Vries equation on a noncommutative space-time Phys. Lett. A 278 139-45 (Dimakis A and Müller-Hoissen F 2000 Preprint hep-th/0007074) Dimakis A and Müller-Hoissen F 2000 Moyal deformation, Seiberg-Witten map, and integrable models Lett. Math. Phys. 195 157-78 (Dimakis A and Müller-Hoissen F 2000 Preprint hep-th/0007160)
-
(2000)
Phys. Lett. A
, vol.278
, pp. 139-145
-
-
Dimakis, A.1
Müller-Hoissen, F.2
-
30
-
-
0034692276
-
-
Preprint hep-th/0007074
-
Dimakis A and Müller-Hoissen F 2000 Bicomplexes, integrable models, and noncommutative geometry Int. J. Mod. Phys. B 14 2455-60 (Dimakis A and Müller-Hoissen F 2000 Preprint hep-th/0006005) Dimakis A and Müller-Hoissen F 2000 The Korteweg-de-Vries equation on a noncommutative space-time Phys. Lett. A 278 139-45 (Dimakis A and Müller-Hoissen F 2000 Preprint hep-th/0007074) Dimakis A and Müller-Hoissen F 2000 Moyal deformation, Seiberg-Witten map, and integrable models Lett. Math. Phys. 195 157-78 (Dimakis A and Müller-Hoissen F 2000 Preprint hep-th/0007160)
-
(2000)
-
-
Dimakis, A.1
Müller-Hoissen, F.2
-
31
-
-
0034692276
-
Moyal deformation, Seiberg-Witten map, and integrable models
-
Dimakis A and Müller-Hoissen F 2000 Bicomplexes, integrable models, and noncommutative geometry Int. J. Mod. Phys. B 14 2455-60 (Dimakis A and Müller-Hoissen F 2000 Preprint hep-th/0006005) Dimakis A and Müller-Hoissen F 2000 The Korteweg-de-Vries equation on a noncommutative space-time Phys. Lett. A 278 139-45 (Dimakis A and Müller-Hoissen F 2000 Preprint hep-th/0007074) Dimakis A and Müller-Hoissen F 2000 Moyal deformation, Seiberg-Witten map, and integrable models Lett. Math. Phys. 195 157-78 (Dimakis A and Müller-Hoissen F 2000 Preprint hep-th/0007160)
-
(2000)
Lett. Math. Phys.
, vol.195
, pp. 157-178
-
-
Dimakis, A.1
Müller-Hoissen, F.2
-
32
-
-
0034692276
-
-
Preprint hep-th/0007160
-
Dimakis A and Müller-Hoissen F 2000 Bicomplexes, integrable models, and noncommutative geometry Int. J. Mod. Phys. B 14 2455-60 (Dimakis A and Müller-Hoissen F 2000 Preprint hep-th/0006005) Dimakis A and Müller-Hoissen F 2000 The Korteweg-de-Vries equation on a noncommutative space-time Phys. Lett. A 278 139-45 (Dimakis A and Müller-Hoissen F 2000 Preprint hep-th/0007074) Dimakis A and Müller-Hoissen F 2000 Moyal deformation, Seiberg-Witten map, and integrable models Lett. Math. Phys. 195 157-78 (Dimakis A and Müller-Hoissen F 2000 Preprint hep-th/0007160)
-
(2000)
-
-
Dimakis, A.1
Müller-Hoissen, F.2
-
33
-
-
0345852499
-
Geometric Realizations of Fordy-Kulish systems
-
at press
-
Langer J and Perline R 2000 Geometric Realizations of Fordy-Kulish systems Pacific J. Math. at press
-
(2000)
Pacific J. Math.
-
-
Langer, J.1
Perline, R.2
-
35
-
-
34250270578
-
Equivalence of the nonlinear Schrödinger equation and the equation of a Heisenberg ferromagnet
-
Zakharov V E and Takhtajan L A 1979 Equivalence of the nonlinear Schrödinger equation and the equation of a Heisenberg ferromagnet Theor. Math. Phys. 38 17-23
-
(1979)
Theor. Math. Phys.
, vol.38
, pp. 17-23
-
-
Zakharov, V.E.1
Takhtajan, L.A.2
-
37
-
-
33746770798
-
Sul moto d'un liquido indefinito con un filetto vorticoso di forma qualunque
-
Da Rios L S 1906 Sul moto d'un liquido indefinito con un filetto vorticoso di forma qualunque Rend. Circ. Mat. Palermo 22 117-35
-
(1906)
Rend. Circ. Mat. Palermo
, vol.22
, pp. 117-135
-
-
Da Rios, L.S.1
-
38
-
-
0001717693
-
Rediscovery of Da Rios equations
-
Ricca R L 1991 Rediscovery of Da Rios equations Nature 352 561-2
-
(1991)
Nature
, vol.352
, pp. 561-562
-
-
Ricca, R.L.1
-
39
-
-
0009021315
-
Recursion in curve geometry
-
Langer J 1999 Recursion in curve geometry J. Math., NY 5 25-51
-
(1999)
J. Math., NY
, vol.5
, pp. 25-51
-
-
Langer, J.1
-
40
-
-
84974277983
-
A soliton on a vortex filament
-
Hasimoto H 1972 A soliton on a vortex filament J. Fluid Mech. 51 477-85
-
(1972)
J. Fluid Mech.
, vol.51
, pp. 477-485
-
-
Hasimoto, H.1
-
41
-
-
0007084601
-
String theory and noncommutative geometry
-
Seiberg N and Witten E 1999 String theory and noncommutative geometry J. High Energy Phys. 9 32
-
(1999)
J. High Energy Phys.
, vol.9
, pp. 32
-
-
Seiberg, N.1
Witten, E.2
-
42
-
-
0034716861
-
Bi-differential calculi and bi-Hamiltonian systems
-
Crampin M, Sarlet W and Thompson G 2000 Bi-differential calculi and bi-Hamiltonian systems J. Phys. A: Math. Gen. 33 L177-80 Crampin M, Sarlet W and Thompson G 2000 Bi-differential calculi, bi-Hamiltonian systems and conformal Killing tensors J. Phys. A: Math. Gen. 33 8755-70
-
(2000)
J. Phys. A: Math. Gen.
, vol.33
-
-
Crampin, M.1
Sarlet, W.2
Thompson, G.3
-
43
-
-
0034623723
-
Bi-differential calculi, bi-Hamiltonian systems and conformal Killing tensors
-
Crampin M, Sarlet W and Thompson G 2000 Bi-differential calculi and bi-Hamiltonian systems J. Phys. A: Math. Gen. 33 L177-80 Crampin M, Sarlet W and Thompson G 2000 Bi-differential calculi, bi-Hamiltonian systems and conformal Killing tensors J. Phys. A: Math. Gen. 33 8755-70
-
(2000)
J. Phys. A: Math. Gen.
, vol.33
, pp. 8755-8770
-
-
Crampin, M.1
Sarlet, W.2
Thompson, G.3
|