메뉴 건너뛰기




Volumn 14, Issue 4, 1998, Pages

Non-abelian integrable systems of the derivative nonlinear Schrödinger type

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0002775872     PISSN: 02665611     EISSN: None     Source Type: Journal    
DOI: 10.1088/0266-5611/14/6/002     Document Type: Article
Times cited : (30)

References (13)
  • 3
    • 0001279175 scopus 로고    scopus 로고
    • One symmetry does not imply integrability
    • Beukers F, Sanders J A and Wang J P 1998 One symmetry does not imply integrability J. Diff. Eq. 146 251-60
    • (1998) J. Diff. Eq. , vol.146 , pp. 251-260
    • Beukers, F.1    Sanders, J.A.2    Wang, J.P.3
  • 4
    • 0000994144 scopus 로고
    • Integrability of nonlinear Hamiltonian systems by inverse scattering method
    • Chen H H, Lee Y C and Liu C S 1979 Integrability of nonlinear Hamiltonian systems by inverse scattering method Phys. Scr. 20 490-2
    • (1979) Phys. Scr. , vol.20 , pp. 490-492
    • Chen, H.H.1    Lee, Y.C.2    Liu, C.S.3
  • 5
    • 36149034702 scopus 로고
    • Nonlinear evolution equations, rescalings, model PDEs and their integrability I
    • Calogero F and Eckhaus W 1987 Nonlinear evolution equations, rescalings, model PDEs and their integrability I Inverse Problems 3 229-62
    • (1987) Inverse Problems , vol.3 , pp. 229-262
    • Calogero, F.1    Eckhaus, W.2
  • 6
    • 0008930293 scopus 로고
    • Derivative nonlinear Schrödinger equations and Hermitian symmetric spaces
    • Fordy A P 1984 Derivative nonlinear Schrödinger equations and Hermitian symmetric spaces J. Phys. A: Math. Gen. 17 1235-45
    • (1984) J. Phys. A: Math. Gen. , vol.17 , pp. 1235-1245
    • Fordy, A.P.1
  • 7
    • 36749109491 scopus 로고
    • An exact solution for a derivative nonlinear Schrödinger equation
    • Kaup D J and Newell A C 1978 An exact solution for a derivative nonlinear Schrödinger equation J. Math. Phys. 19 798-801
    • (1978) J. Math. Phys. , vol.19 , pp. 798-801
    • Kaup, D.J.1    Newell, A.C.2
  • 8
    • 0002318306 scopus 로고
    • Symmetry approach to classification of integrable equations
    • New York: Springer
    • Mikhailov A V, Shabat A B and Sokolov V V 1991 Symmetry approach to classification of integrable equations What is Integrability? (New York: Springer) pp 115-84
    • (1991) What Is Integrability? , pp. 115-184
    • Mikhailov, A.V.1    Shabat, A.B.2    Sokolov, V.V.3
  • 9
    • 33947180234 scopus 로고
    • The symmetry approach to classification of nonlinear equations. Complete lists of integrable systems
    • Mikhailov A V, Shabat A B and Yamilov R I 1987 The symmetry approach to classification of nonlinear equations. Complete lists of integrable systems Russ. Math. Surv. 42 1-63
    • (1987) Russ. Math. Surv. , vol.42 , pp. 1-63
    • Mikhailov, A.V.1    Shabat, A.B.2    Yamilov, R.I.3
  • 11
    • 0032478456 scopus 로고    scopus 로고
    • Integrable evolution equations on associative algebras
    • Olver P J and Sokolov V V 1998 Integrable evolution equations on associative algebras Commun. Math. Phys. 193 245-68
    • (1998) Commun. Math. Phys. , vol.193 , pp. 245-268
    • Olver, P.J.1    Sokolov, V.V.2
  • 12
    • 0001482317 scopus 로고
    • Classification of integrable evolution equations
    • Sokolov V V and Shabat A B 1984 Classification of integrable evolution equations Sov. Sci. Rev. C 4 221-80
    • (1984) Sov. Sci. Rev. C , vol.4 , pp. 221-280
    • Sokolov, V.V.1    Shabat, A.B.2
  • 13
    • 0001514810 scopus 로고
    • Vector-matrix generalizations of classical integrable equations
    • Sokolov V V and Svinolupov S I 1994 Vector-matrix generalizations of classical integrable equations Theor. Math. Phys. 100 959-62
    • (1994) Theor. Math. Phys. , vol.100 , pp. 959-962
    • Sokolov, V.V.1    Svinolupov, S.I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.