-
1
-
-
0032495519
-
-
D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-Magder, U. Meirav, and M. A. Kastner, Nature (London) 391, 156 (1998);
-
(1998)
Nature (London)
, vol.391
, pp. 156
-
-
Goldhaber-Gordon, D.1
Shtrikman, H.2
Mahalu, D.3
Abusch-Magder, D.4
Meirav, U.5
Kastner, M.A.6
-
2
-
-
4243522360
-
-
D. Goldhaber-Gordon, J. Göres, M. A. Kastner, H. Shtrikman, D. Mahalu, and U. Meirav, Phys. Rev. Lett. 81, 5225 (1998).
-
(1998)
Phys. Rev. Lett.
, vol.81
, pp. 5225
-
-
Goldhaber-Gordon, D.1
Göres, J.2
Kastner, M.A.3
Shtrikman, H.4
Mahalu, D.5
Meirav, U.6
-
4
-
-
0001509544
-
-
J. Schmid, J. Weis, K. Eberl, and K. von Klitzing, Physica B 258, 182 (1998).
-
(1998)
Physica B
, vol.258
, pp. 182
-
-
Schmid, J.1
Weis, J.2
Eberl, K.3
von Klitzing, K.4
-
5
-
-
0032614514
-
-
F. Simmel, R. H. Blick, J. P. Kotthaus, W. Wegscheider, and M. Bichler, Phys. Rev. Lett. 83, 804 (1999).
-
(1999)
Phys. Rev. Lett.
, vol.83
, pp. 804
-
-
Simmel, F.1
Blick, R.H.2
Kotthaus, J.P.3
Wegscheider, W.4
Bichler, M.5
-
6
-
-
0034703339
-
-
W. G. van der Wiel, S. De Franceschi, T. Fujisawa, J. M. Elzerman, S. Tarucha, and L. P. Kouwenhoven, Science 289, 2105 (2000).
-
(2000)
Science
, vol.289
, pp. 2105
-
-
van der Wiel, W.G.1
De Franceschi, S.2
Fujisawa, T.3
Elzerman, J.M.4
Tarucha, S.5
Kouwenhoven, L.P.6
-
7
-
-
0032026320
-
-
J. Li, W.-D. Schneider, R. Berndt, and B. Delley, Phys. Rev. Lett. 80, 2893 (1998)
-
J. Li, W.-D. Schneider, R. Berndt, and B. Delley, Phys. Rev. Lett. 80, 2893 (1998).
-
-
-
-
8
-
-
0032562570
-
-
V. Madhavan, W. Chen, T. Jamneala, M. F. Crommie, and N. S. Wingreen, Science 280, 567 (1998).
-
(1998)
Science
, vol.280
, pp. 567
-
-
Madhavan, V.1
Chen, W.2
Jamneala, T.3
Crommie, M.F.4
Wingreen, N.S.5
-
10
-
-
0001311696
-
-
W. Chen, T. Jamneala, V. Madhavan, and M. F. Crommie, Phys. Rev. B 60, 8529 (1999).
-
(1999)
Phys. Rev. B
, vol.60
, pp. 8529
-
-
Chen, W.1
Jamneala, T.2
Madhavan, V.3
Crommie, M.F.4
-
16
-
-
0000979610
-
-
D. C. Ralph, A. W. W. Ludwig, J. von Delft, and R. A. Buhrman, Phys. Rev. Lett. 72, 1064 (1994).
-
(1994)
Phys. Rev. Lett.
, vol.72
, pp. 1064
-
-
Ralph, D.C.1
Ludwig, A.W.W.2
von Delft, J.3
Buhrman, R.A.4
-
17
-
-
0012217761
-
-
For a recent review, see J. von Delft, D. C. Ralph, R. A. Buhrman, S. K. Upadhyay, R. N. Louie, A. W. W. Ludwig, and V. Ambegaokar, Ann. Phys. (N.Y.) 263, 1 (1998).
-
(1998)
Ann. Phys. (N.Y.)
, vol.263
, pp. 1
-
-
von Delft, J.1
Ralph, D.C.2
Buhrman, R.A.3
Upadhyay, S.K.4
Louie, R.N.5
Ludwig, A.W.W.6
Ambegaokar, V.7
-
21
-
-
85038313853
-
-
cond-mat/0102185 (unpublished)]
-
Note, however, that it is difficult to discriminate in this case two-channel Kondo scattering off TLS from ordinary single-channel scattering from magnetic impurities, as both mechanisms produce essentially the same scaling behavior of the energy distribution function [see, e.g., J. Kroha, cond-mat/0102185 (unpublished)].
-
-
-
Kroha, J.1
-
22
-
-
0000264032
-
-
H. Pothier, S. Gueron, N. O. Birge, D. Esteve, and M. H. Devoret, Phys. Rev. Lett. 79, 3490 (1997);
-
(1997)
Phys. Rev. Lett.
, vol.79
, pp. 3490
-
-
Pothier, H.1
Gueron, S.2
Birge, N.O.3
Esteve, D.4
Devoret, M.H.5
-
23
-
-
0001818448
-
-
F. Pierre, H. Pothier, D. Esteve, and M. H. Devoret, J. Low Temp. Phys. 118, 437 (2000).
-
(2000)
J. Low Temp. Phys.
, vol.118
, pp. 437
-
-
Pierre, F.1
Pothier, H.2
Esteve, D.3
Devoret, M.H.4
-
24
-
-
4244206132
-
-
D. Berman, N. B. Zhitenev, R. C. Ashoori, and M. Shayegan, Phys. Rev. Lett. 82, 161 (1999).
-
(1999)
Phys. Rev. Lett.
, vol.82
, pp. 161
-
-
Berman, D.1
Zhitenev, N.B.2
Ashoori, R.C.3
Shayegan, M.4
-
25
-
-
0001688161
-
-
Zh. Éksp. Teor. Fiz. 99, 1598 (1991)
-
K. A. Matveev, Zh. Éksp. Teor. Fiz. 99, 1598 (1991) [Sov. Phys. JETP 72, 892 (1991)].
-
(1991)
Sov. Phys. JETP
, vol.72
, pp. 892
-
-
Matveev, K.A.1
-
27
-
-
0000123845
-
-
H.-B. Pang and D. L. Cox, Phys. Rev. B 44, 9454 (1991)
-
H.-B. Pang and D. L. Cox, Phys. Rev. B 44, 9454 (1991).
-
-
-
-
28
-
-
0000370561
-
-
I. Affleck, A. W. W. Ludwig, H.-B. Pang, and D. L. Cox, Phys. Rev. B 45, 7918 (1992)
-
I. Affleck, A. W. W. Ludwig, H.-B. Pang, and D. L. Cox, Phys. Rev. B 45, 7918 (1992).
-
-
-
-
30
-
-
85038275921
-
-
Note that, while the intermediate-coupling fixed point of the multichannel Kondo model with more than two conduction-electron channels is also stable against exchange anisotropy, the Wilson ratio is no longer universal as in the one- and two-channel cases (see Ref. 25
-
Note that, while the intermediate-coupling fixed point of the multichannel Kondo model with more than two conduction-electron channels is also stable against exchange anisotropy, the Wilson ratio is no longer universal as in the one- and two-channel cases (see Ref. 25).
-
-
-
-
31
-
-
0000269885
-
-
For the anisotropic single-channel Kondo model, the Bethe ansatz equations have been recently solved in the range (Formula presented) See T. A. Costi and G. Zaránd, Phys. Rev. B 59, 12 398 (1999).
-
(1999)
Phys. Rev. B
, vol.59
, pp. 12 398
-
-
Costi, T.A.1
Zaránd, G.2
-
37
-
-
0001280009
-
-
E. A. Goremychkin, R. Osborn, B. D. Rainford, and A. P. Murani, Phys. Rev. Lett. 84, 2211 (2000).
-
(2000)
Phys. Rev. Lett.
, vol.84
, pp. 2211
-
-
Goremychkin, E.A.1
Osborn, R.2
Rainford, B.D.3
Murani, A.P.4
-
43
-
-
0022059796
-
-
S. Maekawa, S. Takahashi, S. Kashiba, and M. Tachiki, J. Phys. Soc. Jpn. 54, 1955 (1985).
-
(1985)
J. Phys. Soc. Jpn.
, vol.54
, pp. 1955
-
-
Maekawa, S.1
Takahashi, S.2
Kashiba, S.3
Tachiki, M.4
-
46
-
-
85038334033
-
-
Note that, in the experiment of Ref. 20, (Formula presented) is equal to 0.46 meV while (Formula presented) hence (Formula presented)
-
Note that, in the experiment of Ref. 20, (Formula presented) is equal to 0.46 meV while (Formula presented) hence (Formula presented)
-
-
-
-
47
-
-
85038326693
-
-
In the general case where the density of states in the quantum box and in the lead are asymmetric functions of energy with different functional forms, the position of the degeneracy point will typically shift from (Formula presented) This shift can be absorbed, though, into a redefinition of the “magnetic field” (Formula presented)
-
In the general case where the density of states in the quantum box and in the lead are asymmetric functions of energy with different functional forms, the position of the degeneracy point will typically shift from (Formula presented) This shift can be absorbed, though, into a redefinition of the “magnetic field” (Formula presented)
-
-
-
-
48
-
-
85038273185
-
-
More precisely, (Formula presented) is the (Formula presented) component of the isospin susceptibility tensor
-
More precisely, (Formula presented) is the (Formula presented) component of the isospin susceptibility tensor.
-
-
-
-
53
-
-
85038345643
-
-
For a spin-(Formula presented) impurity, the pseudo-fermion Green function is diagonal in the spin index, for arbitrary (Formula presented) and (Formula presented) This is no longer the case if (Formula presented) and the impurity spin is larger than one-half
-
For a spin-(Formula presented) impurity, the pseudo-fermion Green function is diagonal in the spin index, for arbitrary (Formula presented) and (Formula presented) This is no longer the case if (Formula presented) and the impurity spin is larger than one-half.
-
-
-
-
54
-
-
85038316978
-
-
For convenience, we have omitted here a constant term, (Formula presented) from the pseudofermion self-energy. The sole effect of such term is to shift the reference energy for the pseudofermion Green functions. It does not enter any physical observable
-
For convenience, we have omitted here a constant term, (Formula presented) from the pseudofermion self-energy. The sole effect of such term is to shift the reference energy for the pseudofermion Green functions. It does not enter any physical observable.
-
-
-
-
57
-
-
85038333599
-
-
Actually, different threshold exponents apply to (Formula presented) and (Formula presented) both of which differ from the characteristic exponents for the (Formula presented) “antiferromagnetic” case
-
Actually, different threshold exponents apply to (Formula presented) and (Formula presented) both of which differ from the characteristic exponents for the (Formula presented) “antiferromagnetic” case.
-
-
-
-
58
-
-
0001553628
-
-
)]; which likewise predicted an erroneous ferromagnetic Kondo effect. These flaws of the Yosida wave function were corrected in turn by going to more complicated variational wave functions, that included particle-hole excitations. For a detailed discussion, see K. Yosida, Theory of Magnetism (Springer-Verlag, Heidelberg, 1996), Chap. 17.
-
We note that an identical exponential dependence of the Kondo temperature as in the KNCA was obtained within Yosida’s variational wave function [K. Yosida, Phys. Rev. 147, 223 (1966)]; which likewise predicted an erroneous ferromagnetic Kondo effect. These flaws of the Yosida wave function were corrected in turn by going to more complicated variational wave functions, that included particle-hole excitations. For a detailed discussion, see K. Yosida, Theory of Magnetism (Springer-Verlag, Heidelberg, 1996), Chap. 17.
-
(1966)
Phys. Rev.
, vol.147
, pp. 223
-
-
Yosida, K.1
-
63
-
-
85038343580
-
-
The shoulders of the charge steps are smeared over a larger energy scale, governed by (Formula presented)
-
The shoulders of the charge steps are smeared over a larger energy scale, governed by (Formula presented)
-
-
-
-
64
-
-
85038299422
-
-
More specifically, for (Formula presented) the physics is that of a Fermi gas interacting with a spin-polarized scattering center. For a detailed discussion, see Ref. 13, Secs. 3.1.2, 4.2e, 5.1.4, 6.1.2, and 7.2.2
-
More specifically, for (Formula presented) the physics is that of a Fermi gas interacting with a spin-polarized scattering center. For a detailed discussion, see Ref. 13, Secs. 3.1.2, 4.2e, 5.1.4, 6.1.2, and 7.2.2.
-
-
-
-
67
-
-
0000418829
-
-
As pointed out by Sengupta and Georges [A. M. Sengupta and A. Georges, Phys. Rev. B 49, 10 020 (1995)], the leading irrelevant operator responsible for the (Formula presented) behavior of the specific heat is absent along the Emery-Kivelson line. Hence one has to deviate from this line to recover the (Formula presented) behavior of the specific heat. This does not apply to the susceptibility in response to a local applied magnetic field, which diverges logarithmically at the Emery-Kivelson line for vanishing T and H (Ref. 59).
-
(1995)
Phys. Rev. B
, vol.49
, pp. 10 020
-
-
Sengupta, A.M.1
Georges, A.2
-
68
-
-
85038321338
-
-
See, e.g., Handbook of Mathematical Functions, edited by M. Abramowitz and I. A. Stegun (Dover, New York, 1972), Chap. 6.
-
(1972)
-
-
-
74
-
-
0034677512
-
-
S. H. Pan, E. W. Hudson, K. M. Lang, H. Eisaki, S. Uchida, and J. C. Davis, Nature (London) 403, 746 (2000).
-
(2000)
Nature (London)
, vol.403
, pp. 746
-
-
Pan, S.H.1
Hudson, E.W.2
Lang, K.M.3
Eisaki, H.4
Uchida, S.5
Davis, J.C.6
-
76
-
-
0035124611
-
-
J.-X. Zhu and C. S. Ting, Phys. Rev. B 63, 020506 (2001)
-
J.-X. Zhu and C. S. Ting, Phys. Rev. B 63, 020506 (2001).
-
-
-
-
77
-
-
85038288233
-
-
For numerical convenience, we fixed (Formula presented) at each iteration by requiring that the integrated spectral weights of (Formula presented) and (Formula presented) add up to one
-
For numerical convenience, we fixed (Formula presented) at each iteration by requiring that the integrated spectral weights of (Formula presented) and (Formula presented) add up to one.
-
-
-
-
78
-
-
85038330373
-
-
Similar to the NCA formulation for the Anderson model (see, e.g., Ref. 34), the magnetic vertex correction in the Coqblin-Schrieffer limit involves summation over an unpaired spin index that comes from the bare vertex. As a result, the magnetic vertex correction identically vanishes
-
Similar to the NCA formulation for the Anderson model (see, e.g., Ref. 34), the magnetic vertex correction in the Coqblin-Schrieffer limit involves summation over an unpaired spin index that comes from the bare vertex. As a result, the magnetic vertex correction identically vanishes.
-
-
-
-
80
-
-
85038265754
-
-
The weak-coupling fixed point corresponds to a free spin. Therefore, the flow to weak coupling is signaled within the KNCA by the appearance of a zero-temperature delta peak in the pseudofermion Green function at the threshold energy, and the absence of a divergence in (Formula presented)
-
The weak-coupling fixed point corresponds to a free spin. Therefore, the flow to weak coupling is signaled within the KNCA by the appearance of a zero-temperature delta peak in the pseudofermion Green function at the threshold energy, and the absence of a divergence in (Formula presented)
-
-
-
-
81
-
-
85038331044
-
-
Indeed, (Formula presented) with (Formula presented) evaluated to leading logarithmic order is the solution of Eq. (B9)
-
Indeed, (Formula presented) with (Formula presented) evaluated to leading logarithmic order is the solution of Eq. (B9).
-
-
-
|