-
1
-
-
0000504410
-
Normal structure coefficients for Banach spaces
-
Bynum W. L. Normal structure coefficients for Banach spaces. Pacific J. Math. 86:1980;427-436.
-
(1980)
Pacific J. Math.
, vol.86
, pp. 427-436
-
-
Bynum, W.L.1
-
3
-
-
0000054048
-
Stability and fixed points for nonexpansive mappings
-
García-Falset J. Stability and fixed points for nonexpansive mappings. Houston J. Math. 20:1994;495-505.
-
(1994)
Houston J. Math.
, vol.20
, pp. 495-505
-
-
García-Falset, J.1
-
4
-
-
0031273099
-
The fixed point property in Banach spaces with NUS-property
-
García-Falset J. The fixed point property in Banach spaces with NUS-property. J. Math. Anal. Appl. 215:1997;532-542.
-
(1997)
J. Math. Anal. Appl.
, vol.215
, pp. 532-542
-
-
García-Falset, J.1
-
5
-
-
21944446936
-
Property (M) and the weak fixed point property
-
García-Falset J., Sims B. Property (M) and the weak fixed point property. Proc. Amer. Math. Soc. 125:1997;2891-2896.
-
(1997)
Proc. Amer. Math. Soc.
, vol.125
, pp. 2891-2896
-
-
García-Falset, J.1
Sims, B.2
-
6
-
-
0004213043
-
-
Cambridge Studies in Advanced Mathematics. Cambridge: Cambridge Univ. Press
-
Goebel K., Kirk W. A. Topics in Metric Fixed Point Theory. Cambridge Studies in Advanced Mathematics. 28:1990;Cambridge Univ. Press, Cambridge.
-
(1990)
Topics in Metric Fixed Point Theory
, vol.28
-
-
Goebel, K.1
Kirk, W.A.2
-
7
-
-
84972584068
-
Some geometric properties related to the fixed point theory for nonexpansive mappings
-
Gossez J.-P., Dozo E. Lami. Some geometric properties related to the fixed point theory for nonexpansive mappings. Pacific J. Math. 40:1972;565-573.
-
(1972)
Pacific J. Math.
, vol.40
, pp. 565-573
-
-
Gossez, J.-P.1
Lami, D.E.2
-
8
-
-
84972548126
-
M-ideals of compact operators
-
Kalton N. J. M-ideals of compact operators. Illinois J. Math. 37:1993;147-169.
-
(1993)
Illinois J. Math.
, vol.37
, pp. 147-169
-
-
Kalton, N.J.1
-
9
-
-
0001044415
-
Property (M), M-ideals and almost isometric structure in Banach spaces
-
Kalton N. J., Werner D. Property (M), M-ideals and almost isometric structure in Banach spaces. J. Reine Angew. Math. 461:1995;137-178.
-
(1995)
J. Reine Angew. Math.
, vol.461
, pp. 137-178
-
-
Kalton, N.J.1
Werner, D.2
-
10
-
-
0001287604
-
A fixed point theorem for mappings which do not increase distances
-
Kirk W. A. A fixed point theorem for mappings which do not increase distances. Amer. Math. Monthly. 72:1965;1004-1006.
-
(1965)
Amer. Math. Monthly
, vol.72
, pp. 1004-1006
-
-
Kirk, W.A.1
-
11
-
-
0000322979
-
Demiclosedness principle and asymptotic behaviour for asymptotically nonexpansive mappings
-
Lin P.-K., Tan K.-K., Xu H.-K. Demiclosedness principle and asymptotic behaviour for asymptotically nonexpansive mappings. Nonlinear Anal. 24:1995;929-946.
-
(1995)
Nonlinear Anal.
, vol.24
, pp. 929-946
-
-
Lin, P.-K.1
Tan, K.-K.2
Xu, H.-K.3
-
13
-
-
84968481460
-
Weak convergence of the sequence of successive approximations for nonexpansive mappings
-
Opial Z. Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Amer. Math. Soc. 73:1967;591-597.
-
(1967)
Bull. Amer. Math. Soc.
, vol.73
, pp. 591-597
-
-
Opial, Z.1
-
14
-
-
0000198390
-
Banach spaces with the uniform Opial property
-
Prus S. Banach spaces with the uniform Opial property. Nonlinear Anal. 18:1992;697-704.
-
(1992)
Nonlinear Anal.
, vol.18
, pp. 697-704
-
-
Prus, S.1
-
15
-
-
84971697799
-
A class of spaces with weak normal structure
-
Sims B. A class of spaces with weak normal structure. Bull. Austral. Math. Soc. 50:1994;523-528.
-
(1994)
Bull. Austral. Math. Soc.
, vol.50
, pp. 523-528
-
-
Sims, B.1
-
16
-
-
0002936173
-
Banach space geometry and the fixed point property
-
T. Domínguez Benavides. Sevilla: Universidad De Sevilla
-
Sims B. Banach space geometry and the fixed point property. Benavides T. Domínguez, . Recent Advances on Metric Fixed Point Theory. 1996;Universidad De Sevilla, Sevilla.
-
(1996)
Recent Advances on Metric Fixed Point Theory
-
-
Sims, B.1
-
17
-
-
0007075350
-
Geometric coefficients on Banach spaces and nonlinear mappings
-
T. Domínguez Benavides. Sevilla: Universidad De Sevilla
-
Xu H.-K. Geometric coefficients on Banach spaces and nonlinear mappings. Benavides T. Domínguez, . Recent Advances on Metric Fixed Point Theory. 1996;Universidad De Sevilla, Sevilla.
-
(1996)
Recent Advances on Metric Fixed Point Theory
-
-
Xu, H.-K.1
|