메뉴 건너뛰기




Volumn 215, Issue 2, 1997, Pages 532-542

The fixed point property in Banach spaces with the NUS-property

Author keywords

[No Author keywords available]

Indexed keywords

GEOMETRY; NUMERICAL METHODS; SET THEORY;

EID: 0031273099     PISSN: 0022247X     EISSN: None     Source Type: Journal    
DOI: 10.1006/jmaa.1997.5657     Document Type: Article
Times cited : (71)

References (20)
  • 1
    • 0001007987 scopus 로고
    • Nonexpansive mappings on Banach lattices and related topics
    • Borwein J. M., Sims B. Nonexpansive mappings on Banach lattices and related topics. Houston J. Math. 10:1984;339-355.
    • (1984) Houston J. Math. , vol.10 , pp. 339-355
    • Borwein, J.M.1    Sims, B.2
  • 2
    • 0000352761 scopus 로고
    • A class of spaces lacking normal structure
    • Bynum W. L. A class of spaces lacking normal structure. Compositio Math. 25:1972;233-236.
    • (1972) Compositio Math. , vol.25 , pp. 233-236
    • Bynum, W.L.1
  • 3
    • 84974327469 scopus 로고
    • Modulus of nearly uniform smoothness and Lindenstrauss formula
    • Dominguez-Benavides T. Modulus of nearly uniform smoothness and Lindenstrauss formula. Glasgow Math. J. 37:1995;143-153.
    • (1995) Glasgow Math. J. , vol.37 , pp. 143-153
    • Dominguez-Benavides, T.1
  • 4
    • 38249007484 scopus 로고
    • A geometric property of Banach spaces related to the fixed point property
    • Garcia-Falset J., Llorens-Fuster E. A geometric property of Banach spaces related to the fixed point property. J. Math. Anal. Appl. 172:1993;39-52.
    • (1993) J. Math. Anal. Appl. , vol.172 , pp. 39-52
    • Garcia-Falset, J.1    Llorens-Fuster, E.2
  • 5
    • 84972429242 scopus 로고
    • The fixed point property in Banach spaces whose characteristic of uniform convexity is less than 2
    • Garcia-Falset J. The fixed point property in Banach spaces whose characteristic of uniform convexity is less than 2. J. Austral. Math. Soc. Ser. A. 45:1993;169-173.
    • (1993) J. Austral. Math. Soc. Ser. A , vol.45 , pp. 169-173
    • Garcia-Falset, J.1
  • 6
    • 0000054048 scopus 로고
    • Stability and fixed points for nonexpansive mappings
    • Garcia-Falset J. Stability and fixed points for nonexpansive mappings. Houston J. Math. 20:1994;495-505.
    • (1994) Houston J. Math. , vol.20 , pp. 495-505
    • Garcia-Falset, J.1
  • 7
    • 0001791995 scopus 로고
    • On the structure of minimal invariant sets for nonexpansive mappings
    • Goebel K. On the structure of minimal invariant sets for nonexpansive mappings. Ann. Univ. Mariae Curie-SklŁodowska Sect. A. 29:1975;73-75.
    • (1975) Ann. Univ. Mariae Curie-SklŁodowska Sect. A , vol.29 , pp. 73-75
    • Goebel, K.1
  • 9
    • 84880065824 scopus 로고
    • Banach spaces which are nearly uniformly convex
    • Huff R. Banach spaces which are nearly uniformly convex. Rocky Mountain J. Math. 10:1980;743-749.
    • (1980) Rocky Mountain J. Math. , vol.10 , pp. 743-749
    • Huff, R.1
  • 10
    • 38249003285 scopus 로고
    • A sufficient condition for the fixed point property
    • Jiménez-Melado A., Llorens-Fuster E. A sufficient condition for the fixed point property. Nonlinear Anal. 20:1993;849-853.
    • (1993) Nonlinear Anal. , vol.20 , pp. 849-853
    • Jiménez-Melado, A.1    Llorens-Fuster, E.2
  • 11
    • 0001597619 scopus 로고    scopus 로고
    • The fixed point property for some uniformly nonsquare Banach spaces
    • Jiménez-Melado A., Llorens-Fuster E. The fixed point property for some uniformly nonsquare Banach spaces. Boll. Un. Mat. Ital. A (7). 3:1996;587-595.
    • (1996) Boll. Un. Mat. Ital. A (7) , vol.3 , pp. 587-595
    • Jiménez-Melado, A.1    Llorens-Fuster, E.2
  • 12
    • 84972530208 scopus 로고
    • Existence of fixed points for non expansive map in space without normal structure
    • Karlovitz L. A. Existence of fixed points for non expansive map in space without normal structure. Pacific J. Math. 66:1976;153-159.
    • (1976) Pacific J. Math. , vol.66 , pp. 153-159
    • Karlovitz, L.A.1
  • 13
    • 0001287604 scopus 로고
    • A fixed point theorem for mappings which do not increase distances
    • Kirk W. A. A fixed point theorem for mappings which do not increase distances. Amer. Math. Monthly. 72:1965;1004-1006.
    • (1965) Amer. Math. Monthly , vol.72 , pp. 1004-1006
    • Kirk, W.A.1
  • 14
    • 0001100147 scopus 로고
    • Property (β) implies normal structure of the dual space
    • Kutzurova D., Maluta E., Prus S. Property (β) implies normal structure of the dual space. Rend. Circ. Mat. Palmero. 41:1992;353-368.
    • (1992) Rend. Circ. Mat. Palmero , vol.41 , pp. 353-368
    • Kutzurova, D.1    Maluta, E.2    Prus, S.3
  • 16
    • 84972554358 scopus 로고
    • Unconditional bases and fixed points of nonexpansive mappings
    • Lin P. K. Unconditional bases and fixed points of nonexpansive mappings. Pacific J. Math. 116:1985;69-76.
    • (1985) Pacific J. Math. , vol.116 , pp. 69-76
    • Lin, P.K.1
  • 17
    • 0000200725 scopus 로고
    • Nearly uniformly smooth Banach spaces
    • Prus S. Nearly uniformly smooth Banach spaces. Boll. Un. Mat. Ital. B (7). 3:1989;507-521.
    • (1989) Boll. Un. Mat. Ital. B (7) , vol.3 , pp. 507-521
    • Prus, S.1
  • 18
    • 0001133454 scopus 로고
    • Orthogonality and fixed points of nonexpansive maps
    • Sims B. Orthogonality and fixed points of nonexpansive maps. Proc. Centre Math. Anal. Austral. Nat. Univ. 20:1988;179-186.
    • (1988) Proc. Centre Math. Anal. Austral. Nat. Univ. , vol.20 , pp. 179-186
    • Sims, B.1
  • 19
    • 84971697799 scopus 로고
    • A class of spaces with weak normal structure
    • Sims B. A class of spaces with weak normal structure. Bull. Austral. Math. Soc. 50:1994;523-528.
    • (1994) Bull. Austral. Math. Soc. , vol.50 , pp. 523-528
    • Sims, B.1
  • 20
    • 0000857705 scopus 로고
    • A dual view of the theorem of Baillon
    • New York: Dekker. p. 279-286
    • Turett B. A dual view of the theorem of Baillon. Lecture Notes in Pure and Appl. Math. 80:1982;Dekker, New York. p. 279-286.
    • (1982) Lecture Notes in Pure and Appl. Math. , vol.80
    • Turett, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.