메뉴 건너뛰기




Volumn 486, Issue 1, 2001, Pages 41-52

The REC41 gene of Saccharomyces cerevisiae: Isolation and genetic analysis

Author keywords

DNA repair; Homologous recombination; Rec Mutants; Yeast

Indexed keywords

DNA;

EID: 0035811265     PISSN: 09218777     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0921-8777(01)00079-9     Document Type: Article
Times cited : (1)

References (44)
  • 1
    • 0030783087 scopus 로고    scopus 로고
    • Double strand break repair
    • Ghu G. Double strand break repair. J. Biol. Chem. 272:1997;24097-24100.
    • (1997) J. Biol. Chem. , vol.272 , pp. 24097-24100
    • Ghu, G.1
  • 2
    • 0034106727 scopus 로고    scopus 로고
    • Recombination: A frank view of exchanges and vice versa
    • Haber J.E. Recombination: a frank view of exchanges and vice versa. Curr. Opinion Cell. Biol. 12:2000;286-292.
    • (2000) Curr. Opinion Cell. Biol. , vol.12 , pp. 286-292
    • Haber, J.E.1
  • 3
    • 0031720421 scopus 로고    scopus 로고
    • Recent advances in DNA repair and recombination
    • Iwanenko L.A., Jones N.J. Recent advances in DNA repair and recombination. Mutat. Res. 408:1998;227-236.
    • (1998) Mutat. Res. , vol.408 , pp. 227-236
    • Iwanenko, L.A.1    Jones, N.J.2
  • 4
    • 0026989233 scopus 로고
    • Genetic control of meiotic recombination in yeast Saccharomyces cerevisiae
    • Korolev V.G. Genetic control of meiotic recombination in yeast Saccharomyces cerevisiae. Genetika (Moscow). 27(11):1992;5-14.
    • (1992) Genetika (Moscow) , vol.27 , Issue.11 , pp. 5-14
    • Korolev, V.G.1
  • 5
    • 0027195514 scopus 로고
    • Genetic control of mitotic recombination in yeast Saccharomyces cerevisiae
    • Korolev V.G. Genetic control of mitotic recombination in yeast Saccharomyces cerevisiae. Genetika (Moscow). 28(2):1993;197-211.
    • (1993) Genetika (Moscow) , vol.28 , Issue.2 , pp. 197-211
    • Korolev, V.G.1
  • 6
    • 0016274036 scopus 로고
    • A genetic study of X-ray sensitive mutants in yeast
    • Game J.C., Mortimer R.K. A genetic study of X-ray sensitive mutants in yeast. Mutat. Res. 24:1974;281-292.
    • (1974) Mutat. Res. , vol.24 , pp. 281-292
    • Game, J.C.1    Mortimer, R.K.2
  • 7
    • 0017618852 scopus 로고
    • Evidence for joint genic control of spontaneous mutation and genetic recombination during mitosis in Saccharomyces
    • Golin J.E., Esposito M.S. Evidence for joint genic control of spontaneous mutation and genetic recombination during mitosis in Saccharomyces. Mol. Gen. Genet. 150:1977;127-135.
    • (1977) Mol. Gen. Genet. , vol.150 , pp. 127-135
    • Golin, J.E.1    Esposito, M.S.2
  • 8
    • 0018972294 scopus 로고
    • Mitotic recombination in yeast: Isolation and characterisation of mutants with enhanced spontaneous mitotic gene conversion rates
    • Maloney D.H., Fogel S. Mitotic recombination in yeast: isolation and characterisation of mutants with enhanced spontaneous mitotic gene conversion rates. Genetics. 94:1980;825-839.
    • (1980) Genetics , vol.94 , pp. 825-839
    • Maloney, D.H.1    Fogel, S.2
  • 10
    • 0024058351 scopus 로고
    • Genetic control of intrachromosomal recombination in Saccharomyces cerevisiae. I. Isolation and genetic characterization of hyper-recombination mutations
    • Aguilera A., Klein H.L. Genetic control of intrachromosomal recombination in Saccharomyces cerevisiae. I. Isolation and genetic characterization of hyper-recombination mutations. Genetics. 119:1988;779-790.
    • (1988) Genetics , vol.119 , pp. 779-790
    • Aguilera, A.1    Klein, H.L.2
  • 11
    • 0024324482 scopus 로고
    • A hyper-recombination mutation in S. cerevisiae identifies a novel eukaryotic topoisomerase
    • Wallis J.W., Chrebet G., Brodsky G., Rolfe M., Rothstein R. A hyper-recombination mutation in S. cerevisiae identifies a novel eukaryotic topoisomerase. Cell. 28:1989;409-419.
    • (1989) Cell , vol.28 , pp. 409-419
    • Wallis, J.W.1    Chrebet, G.2    Brodsky, G.3    Rolfe, M.4    Rothstein, R.5
  • 13
    • 0029978415 scopus 로고    scopus 로고
    • Molecular and phenotypic analysis of the S. cerevisiae MNN10 gene identifies a family of related glycosyltransferases
    • Dean N., Poster J.B. Molecular and phenotypic analysis of the S. cerevisiae MNN10 gene identifies a family of related glycosyltransferases. Glycobiology. 6:1996;73-81.
    • (1996) Glycobiology , vol.6 , pp. 73-81
    • Dean, N.1    Poster, J.B.2
  • 14
    • 0030065910 scopus 로고    scopus 로고
    • BED1, a gene encoding a galactosyltransferase homologueis required for polarized growth and efficient bid emergence in Saccharomyces cerevisiae
    • Mondesert G., Reed S.I. BED1, a gene encoding a galactosyltransferase homologueis required for polarized growth and efficient bid emergence in Saccharomyces cerevisiae. J. Cell. Biol. 132:1996;137-151.
    • (1996) J. Cell. Biol. , vol.132 , pp. 137-151
    • Mondesert, G.1    Reed, S.I.2
  • 15
    • 0031693253 scopus 로고    scopus 로고
    • Identification of functional connections between calmodulin and the yeast actin cytoskeleton
    • Sekiya-Kawasaki M., Botstein D., Ohya Y. Identification of functional connections between calmodulin and the yeast actin cytoskeleton. Genetics. 150:1998;43-58.
    • (1998) Genetics , vol.150 , pp. 43-58
    • Sekiya-Kawasaki, M.1    Botstein, D.2    Ohya, Y.3
  • 16
    • 0027484088 scopus 로고
    • Mutations that enhance the cap2 null mutant phenotype in Saccharomyces cerevisiae affect the actin cytoskeleton, morphogenesis and pattern of growth
    • Karpova T.C., Lepetit M.M., Cooper J.A. Mutations that enhance the cap2 null mutant phenotype in Saccharomyces cerevisiae affect the actin cytoskeleton, morphogenesis and pattern of growth. Genetics. 135:1993;693-709.
    • (1993) Genetics , vol.135 , pp. 693-709
    • Karpova, T.C.1    Lepetit, M.M.2    Cooper, J.A.3
  • 17
    • 0026620556 scopus 로고
    • The role of p34 kinases in the G1 to S-phase transition
    • Reed S.I. The role of p34 kinases in the G1 to S-phase transition. Annu. Rev. Cell. Biol. 8:1992;529-561.
    • (1992) Annu. Rev. Cell. Biol. , vol.8 , pp. 529-561
    • Reed, S.I.1
  • 19
    • 0020645054 scopus 로고
    • One step gene disruption in yeast
    • Rothstein R.J. One step gene disruption in yeast. Methods Enzymol. 101:1983;202-211.
    • (1983) Methods Enzymol. , vol.101 , pp. 202-211
    • Rothstein, R.J.1
  • 21
    • 0019215347 scopus 로고
    • Transcriptional and transtational expression of a chimeric bacterial-yeast plasmids in yeast
    • Chevallier M.R., Bloch J.-C., Lacroute F. Transcriptional and transtational expression of a chimeric bacterial-yeast plasmids in yeast. Gene. 11:1980;11-19.
    • (1980) Gene , vol.11 , pp. 11-19
    • Chevallier, M.R.1    Bloch, J.-C.2    Lacroute, F.3
  • 22
    • 0020529962 scopus 로고
    • Transformation of intact yeast cells treated with alkali cations
    • Ito H., Fukuda Y., Murata K., Kimura A. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:1983;163-168.
    • (1983) J. Bacteriol. , vol.153 , pp. 163-168
    • Ito, H.1    Fukuda, Y.2    Murata, K.3    Kimura, A.4
  • 24
    • 0023512812 scopus 로고
    • Genetic study of plasmid integration into yeast chromosomes. VI. Patterns of the destabilization of chimeric chromosomes and their use in gene mapping
    • Bulat S.A. Genetic study of plasmid integration into yeast chromosomes. VI. Patterns of the destabilization of chimeric chromosomes and their use in gene mapping. Genetika (Moscow). 23:1987;2138-2147.
    • (1987) Genetika (Moscow) , vol.23 , pp. 2138-2147
    • Bulat, S.A.1
  • 25
    • 0002822118 scopus 로고
    • DNA repair and mutagenesis in yeast
    • in: J. Stratern, E.W. Jones, J.R. Broach (Eds.), Life Cycle and Inheritance, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
    • R.H. Haynes, B.A. Kunz, DNA repair and mutagenesis in yeast, in: J. Stratern, E.W. Jones, J.R. Broach (Eds.), The Molecular Biology of the Yeast Saccharomyces. Life Cycle and Inheritance, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1981, pp. 371-414.
    • (1981) The Molecular Biology of the Yeast Saccharomyces , pp. 371-414
    • Haynes, R.H.1    Kunz, B.A.2
  • 26
    • 0018838194 scopus 로고
    • The RAD52 gene is required for homothallic interconversion of mating types and spontaneous mitotic recombination in yeast
    • Malone R.E., Esposito R.E. The RAD52 gene is required for homothallic interconversion of mating types and spontaneous mitotic recombination in yeast. Proc. Natl. Acad. Sci. U.S.A. 77:1980;503-507.
    • (1980) Proc. Natl. Acad. Sci. U.S.A. , vol.77 , pp. 503-507
    • Malone, R.E.1    Esposito, R.E.2
  • 27
    • 0019418881 scopus 로고
    • Homothallic mating type switching generates lethal chromosome breaks in rad52 strains of Saccharomyces cerevisiae
    • Weiffenbach B., Haber J.E. Homothallic mating type switching generates lethal chromosome breaks in rad52 strains of Saccharomyces cerevisiae. Mol. Cell. Biol. 1:1981;522-534.
    • (1981) Mol. Cell. Biol. , vol.1 , pp. 522-534
    • Weiffenbach, B.1    Haber, J.E.2
  • 29
    • 0028966924 scopus 로고
    • Yeast glycosylation mutants are sensitive to aminoglycosides
    • Dean N. Yeast glycosylation mutants are sensitive to aminoglycosides. Proc. Natl. Acad. Sci. U.S.A. 92:1995;1287-1291.
    • (1995) Proc. Natl. Acad. Sci. U.S.A. , vol.92 , pp. 1287-1291
    • Dean, N.1
  • 31
    • 0026759693 scopus 로고
    • XRS2, a DNA repair gene of Saccharomyces cerevisiae, is needed for meiotic recombination
    • Ivanov E.L., Korolev V.G., Fabre F. XRS2, a DNA repair gene of Saccharomyces cerevisiae, is needed for meiotic recombination. Genetics. 132:1992;651-664.
    • (1992) Genetics , vol.132 , pp. 651-664
    • Ivanov, E.L.1    Korolev, V.G.2    Fabre, F.3
  • 32
    • 0019172203 scopus 로고
    • Genetic control of diploid recovery after gamma-irradiation in the yeast Saccharomyces cerevisiae
    • Saeki T., Machida I., Nakai S. Genetic control of diploid recovery after gamma-irradiation in the yeast Saccharomyces cerevisiae. Mutat. Res. 73:1980;251-265.
    • (1980) Mutat. Res. , vol.73 , pp. 251-265
    • Saeki, T.1    Machida, I.2    Nakai, S.3
  • 34
    • 0016839955 scopus 로고
    • Induction of DNA double-strand breaks by X-rays in a radiosensitive strain of the yeast Saccharomyces cerevisiae
    • Ho K.S. Induction of DNA double-strand breaks by X-rays in a radiosensitive strain of the yeast Saccharomyces cerevisiae. Mutat. Res. 30:1975;327-334.
    • (1975) Mutat. Res. , vol.30 , pp. 327-334
    • Ho, K.S.1
  • 35
    • 0017255643 scopus 로고
    • The repair of double-strand breaks in the nuclear DNA of Saccharomyces cerevisiae and its genetic control
    • Resnick M.A., Martin P. The repair of double-strand breaks in the nuclear DNA of Saccharomyces cerevisiae and its genetic control. Mol. Gen. Genet. 143:1976;119-129.
    • (1976) Mol. Gen. Genet. , vol.143 , pp. 119-129
    • Resnick, M.A.1    Martin, P.2
  • 36
    • 0026530911 scopus 로고
    • Characterization of double-strand break-induced recombination: Homology requirements and single-stranded DNA formation
    • Sugawara N., Haber J.E. Characterization of double-strand break-induced recombination: homology requirements and single-stranded DNA formation. Mol. Cell. Biol. 12:1992;563-575.
    • (1992) Mol. Cell. Biol. , vol.12 , pp. 563-575
    • Sugawara, N.1    Haber, J.E.2
  • 37
    • 0023404051 scopus 로고
    • Recombinational substrates designed to study recombination between unique and repetitive sequences in vivo
    • Fasullo M.T., Davies R.W. Recombinational substrates designed to study recombination between unique and repetitive sequences in vivo. Proc. Natl. Acad. Sci. U.S.A. 84:1987;6215-6219.
    • (1987) Proc. Natl. Acad. Sci. U.S.A. , vol.84 , pp. 6215-6219
    • Fasullo, M.T.1    Davies, R.W.2
  • 38
    • 0024336572 scopus 로고
    • Protein glycosylation defects in the Saccharomyces cerevisiae mnn7 mutant class. Support for the stop signal proposed for regulation of outer chain elongation
    • Ballou L., Alvarado E., Tsai P.K., Dell A., Ballou C.E. Protein glycosylation defects in the Saccharomyces cerevisiae mnn7 mutant class. Support for the stop signal proposed for regulation of outer chain elongation. J. Biol. Chem. 264:1989;11857-11864.
    • (1989) J. Biol. Chem. , vol.264 , pp. 11857-11864
    • Ballou, L.1    Alvarado, E.2    Tsai, P.K.3    Dell, A.4    Ballou, C.E.5
  • 39
    • 0025829655 scopus 로고
    • Protein geranylgeranyltransferase of Saccharomyces cerevisiae is specific for Cys-Xaa-Xaa-Leu motif proteins and requires the CDC43 gene product but not the DPR1 gene product
    • Finegold A.A., Johnson D.I., Farnsworth C.C., Gelb M.H., Judd S.R., Glomset J.A., Tamanoi F. Protein geranylgeranyltransferase of Saccharomyces cerevisiae is specific for Cys-Xaa-Xaa-Leu motif proteins and requires the CDC43 gene product but not the DPR1 gene product. Proc. Natl. Acad. Sci. U.S.A. 88:1991;4448-4452.
    • (1991) Proc. Natl. Acad. Sci. U.S.A. , vol.88 , pp. 4448-4452
    • Finegold, A.A.1    Johnson, D.I.2    Farnsworth, C.C.3    Gelb, M.H.4    Judd, S.R.5    Glomset, J.A.6    Tamanoi, F.7
  • 40
  • 41
    • 0025819073 scopus 로고
    • Protein farnesyltransferase and geranylgeranyltransferase share a common alpha subunit
    • Seabra M.C., Reiss Y., Casey P.J., Brown M.S., Goldstein J.L. Protein farnesyltransferase and geranylgeranyltransferase share a common alpha subunit. Cell. 65:1991;429-434.
    • (1991) Cell , vol.65 , pp. 429-434
    • Seabra, M.C.1    Reiss, Y.2    Casey, P.J.3    Brown, M.S.4    Goldstein, J.L.5
  • 43
    • 0026688456 scopus 로고
    • CDC43 and RAM2 encode the polypeptide subunits of a yeast type I protein geranylgeranyltransferase
    • Mayer M.L., Caplin B.E., Marshall M.S. CDC43 and RAM2 encode the polypeptide subunits of a yeast type I protein geranylgeranyltransferase. J. Biol. Chem. 267:1992;20589-20593.
    • (1992) J. Biol. Chem. , vol.267 , pp. 20589-20593
    • Mayer, M.L.1    Caplin, B.E.2    Marshall, M.S.3
  • 44
    • 0030228708 scopus 로고    scopus 로고
    • Signalling from endoplasmic reticulum to nucleus: Transcription factor with a basic-leucine zipper motif is required for the unfolded protein-response pathway
    • Mori K., Kawahara T., Yoshida H., Yanagi H., Yura T. Signalling from endoplasmic reticulum to nucleus: transcription factor with a basic-leucine zipper motif is required for the unfolded protein-response pathway. Genes Cells. 1:1996;803-817.
    • (1996) Genes Cells , vol.1 , pp. 803-817
    • Mori, K.1    Kawahara, T.2    Yoshida, H.3    Yanagi, H.4    Yura, T.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.