-
2
-
-
0030540448
-
Lorenz equations, Part I, existence and non-uniqueness of homoclinic orbits
-
2. X. CHEN, Lorenz equations, Part I, Existence and non-uniqueness of homoclinic orbits, SIAM J. Math. Analysis 27 (1996); Part II, "Randomly" rotated homoclinic orbits and chaotic trajectories, Discrete and Continuous Dynamical Systems 2 (1996), 121-140; Part III, Existence of homoclinic explosion, preprint.
-
(1996)
SIAM J. Math. Analysis
, vol.27
-
-
Chen, X.1
-
3
-
-
0011672661
-
Lorenz equations, Part II, "Randomly" rotated homoclinic orbits and chaotic trajectories
-
2. X. CHEN, Lorenz equations, Part I, Existence and non-uniqueness of homoclinic orbits, SIAM J. Math. Analysis 27 (1996); Part II, "Randomly" rotated homoclinic orbits and chaotic trajectories, Discrete and Continuous Dynamical Systems 2 (1996), 121-140; Part III, Existence of homoclinic explosion, preprint.
-
(1996)
Discrete and Continuous Dynamical Systems
, vol.2
, pp. 121-140
-
-
-
4
-
-
0030540448
-
-
preprint
-
2. X. CHEN, Lorenz equations, Part I, Existence and non-uniqueness of homoclinic orbits, SIAM J. Math. Analysis 27 (1996); Part II, "Randomly" rotated homoclinic orbits and chaotic trajectories, Discrete and Continuous Dynamical Systems 2 (1996), 121-140; Part III, Existence of homoclinic explosion, preprint.
-
Lorenz equations, Part III, Existence of Homoclinic Explosion
-
-
-
5
-
-
0003478288
-
-
Springer-Verlag, Berlin/New York
-
3. J. GUCKENHEIMER AND P. HOLMES, "Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Fields," Springer-Verlag, Berlin/New York, 1983.
-
(1983)
Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Fields
-
-
Guckenheimer, J.1
Holmes, P.2
-
7
-
-
5544311017
-
Existence of a homoclinic orbit of the Lorenz system by precise shooting
-
5. B. D. HASSARD AND J. ZHANG, Existence of a homoclinic orbit of the Lorenz system by precise shooting, Siam J. Math. Anal. 25 (1994), 179-196.
-
(1994)
Siam J. Math. Anal.
, vol.25
, pp. 179-196
-
-
Hassard, B.D.1
Zhang, J.2
-
8
-
-
0000034737
-
Periodic solutions of a forced second order differential equation
-
6. S. HASTINGS AND J. B. MCLEOD, Periodic Solutions of a forced second order differential equation, J. Nonlinear Sci. (1991).
-
(1991)
J. Nonlinear Sci.
-
-
Hastings, S.1
McLeod, J.B.2
-
9
-
-
21144461130
-
On chaotic motion of a nonlinear pendulum with oscillatory forcing
-
7. S. HASTINGS AND J. B. MCLEOD, On chaotic motion of a nonlinear pendulum with oscillatory forcing, Amer. Math. Monthly (1993).
-
(1993)
Amer. Math. Monthly
-
-
Hastings, S.1
McLeod, J.B.2
-
10
-
-
0011603296
-
Oscillating solutions of the Falkner-Skan equation with positive β
-
8. S. HASTINGS AND W. TROY, Oscillating solutions of the Falkner-Skan equation with positive β, J. Differential Equations (1987).
-
(1987)
J. Differential Equations
-
-
Hastings, S.1
Troy, W.2
-
11
-
-
84967735795
-
A shooting approach to the Lorenz equations
-
9. S. HASTINGS AND W. TROY, A shooting Approach to the Lorenz equations, Bull. Amer. Math. Soc. (1992), 298-303.
-
(1992)
Bull. Amer. Math. Soc.
, pp. 298-303
-
-
Hastings, S.1
Troy, W.2
-
12
-
-
0000356514
-
A proof that the Lorenz equations have a homoclinic orbit
-
10. S. HASTINGS AND W. TROY, A proof that the Lorenz equations have a homoclinic orbit, J. Differential Equations 113 (1994), 166-188.
-
(1994)
J. Differential Equations
, vol.113
, pp. 166-188
-
-
Hastings, S.1
Troy, W.2
-
13
-
-
0002220884
-
A computer proof that the Lorenz equations have "chaotic" solutions
-
11. B. HASSARD, S. HASTINGS, W. TROY, AND J. ZHANG, A computer proof that the Lorenz equations have "chaotic" solutions, Appl. Math. Lett. 7 (1994), 79-83.
-
(1994)
Appl. Math. Lett.
, vol.7
, pp. 79-83
-
-
Hassard, B.1
Hastings, S.2
Troy, W.3
Zhang, J.4
-
14
-
-
0002822757
-
Preturbulence: A regime observed in a fluid flow model of Lorenz
-
12. J. L. KAPLAN AND J. A. YORKE, Preturbulence: A regime observed in a fluid flow model of Lorenz, Comm. Math. Phys. 67 (1979), 93-108.
-
(1979)
Comm. Math. Phys.
, vol.67
, pp. 93-108
-
-
Kaplan, J.L.1
Yorke, J.A.2
-
15
-
-
0000241853
-
Deterministic non-periodic flow
-
13. E. N. LORENZ, Deterministic non-periodic flow, Atmos. Sci. 20 (1963), 130-141.
-
(1963)
Atmos. Sci.
, vol.20
, pp. 130-141
-
-
Lorenz, E.N.1
-
16
-
-
0002403778
-
Chaos in the Lorenz equations, a computer proof
-
14. K. MISCHAIKO AND M. MROZEK, Chaos in the Lorenz equations, a computer proof, Bulletin AMS 32 (1995), 66-72.
-
(1995)
Bulletin AMS
, vol.32
, pp. 66-72
-
-
Mischaiko, K.1
Mrozek, M.2
-
17
-
-
0003293377
-
The Lorenz equations: Bifurcations, chaos, and strange attractors
-
Springer-Verlag, Berlin/New York
-
15. C. SPARROW, "The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors," Applied Mathematical Sciences, Vol. 42, Springer-Verlag, Berlin/New York, 1982.
-
(1982)
Applied Mathematical Sciences
, vol.42
-
-
Sparrow, C.1
|