-
1
-
-
0000209487
-
Harmonic measure of some Cantor type sets
-
[1] A. BATAKIS, Harmonic measure of some Cantor type sets, Ann. Acad. Sci. Fenn., vol. 21, 1996, p. 255-270.
-
(1996)
Ann. Acad. Sci. Fenn.
, vol.21
, pp. 255-270
-
-
Batakis, A.1
-
2
-
-
34250582717
-
The boundary correspondance under quasiconformal mappings
-
[2] A. BEURLING et L. AHLFORS, The boundary correspondance under quasiconformal mappings, Acta Math., vol. 96, 1956, p. 125-142.
-
(1956)
Acta Math.
, vol.96
, pp. 125-142
-
-
Beurling, A.1
Ahlfors, L.2
-
3
-
-
0000728518
-
On the sum of digits of real numbers represented in the dyadic system
-
[3] A. S. BESICOVITCH, On the sum of digits of real numbers represented in the dyadic system, Math. Annalen, vol. 110, 1934-35, p. 321-330.
-
(1934)
Math. Annalen
, vol.110
, pp. 321-330
-
-
Besicovitch, A.S.1
-
5
-
-
0010068705
-
A multifractal analysis of an interesting class of measures
-
[5] A. BISBAS, A multifractal analysis of an interesting class of measures, Colloq. Math., vol. 69, 1995, p. 37-42.
-
(1995)
Colloq. Math.
, vol.69
, pp. 37-42
-
-
Bisbas, A.1
-
6
-
-
0002534887
-
On the Hausdorff dimension of Rademacher Riesz products
-
[6] A. BISBAS et C. KARANIKAS, On the Hausdorff dimension of Rademacher Riesz products, Monatsh. Math., vol. 110, 1990, p. 15-21.
-
(1990)
Monatsh. Math.
, vol.110
, pp. 15-21
-
-
Bisbas, A.1
Karanikas, C.2
-
7
-
-
0001629028
-
On the Hausdorff dimension of harmonic measure in higher dimension
-
[7] J. BOURGAIN, On the Hausdorff dimension of harmonic measure in higher dimension, Invent. Math., vol. 87, 1987, p. 477-483.
-
(1987)
Invent. Math.
, vol.87
, pp. 477-483
-
-
Bourgain, J.1
-
8
-
-
0000671226
-
On the multifractal analysis of measures
-
[8] G. BROWN, G. MICHON et J. PEYRIÈRE, On the Multifractal Analysis of Measures, J. Stat. Phys., vol. 66, 1992, p. 775-790.
-
(1992)
J. Stat. Phys.
, vol.66
, pp. 775-790
-
-
Brown, G.1
Michon, G.2
Peyrière, J.3
-
9
-
-
0000941738
-
Completely singular elliptic-harmonic measures
-
[9] L. CAFFARELLI, E. FABES et C. KENIG, Completely singular elliptic-harmonic measures, Ind. U. Math. J., vol. 30, 1981, p. 917-924.
-
(1981)
Ind. U. Math. J.
, vol.30
, pp. 917-924
-
-
Caffarelli, L.1
Fabes, E.2
Kenig, C.3
-
10
-
-
0000923010
-
On the support of harmonic for sets of cantor type
-
[10] L. CARLESON, On the support of harmonic for sets of cantor type, Ann. Acad. Sci. Fenn., vol. 10, 1985, p. 113-123.
-
(1985)
Ann. Acad. Sci. Fenn.
, vol.10
, pp. 113-123
-
-
Carleson, L.1
-
11
-
-
0002672692
-
The fractional dimension of a set defined by decimal properties
-
[11] H. G. EGGLESTON, The fractional dimension of a set defined by decimal properties, Quart. J. Math. Oxford, Ser. (2), vol. 20, 1949, p. 31-46.
-
(1949)
Quart. J. Math. Oxford, Ser. (2)
, vol.20
, pp. 31-46
-
-
Eggleston, H.G.1
-
14
-
-
0003002997
-
Sur la dimension des mesures
-
[14] A. H. FAN, Sur la dimension des mesures, Studia Math., vol. 111, 1994, p. 1-17.
-
(1994)
Studia Math.
, vol.111
, pp. 1-17
-
-
Fan, A.H.1
-
15
-
-
0002780973
-
The theory of weights and the dirichlet problem for elliptic equations
-
[15] R. FEFFERMAN, C. KENIG et J. PIPHER, The theory of weights and the Dirichlet problem for elliptic equations, Ann. of Math. (2), vol. 134, 1991, p. 65-124.
-
(1991)
Ann. of Math. (2)
, vol.134
, pp. 65-124
-
-
Fefferman, R.1
Kenig, C.2
Pipher, J.3
-
17
-
-
0002638812
-
Sur la comparaison des mesures avec les mesures de Hausdorff
-
[17] Y. HEURTEAUX, Sur la comparaison des mesures avec les mesures de Hausdorff, C.R. Acad. Sci., Paris, t. 321, série 1, 1995, p. 61-65.
-
(1995)
C.R. Acad. Sci., Paris
, vol.321
, Issue.1
, pp. 61-65
-
-
Heurteaux, Y.1
-
18
-
-
21844503932
-
Two problems on doubling measures
-
[18] R. KAUFMAN et J. M. WU, Two problems on doubling measures, Rev. Mat. Iberoamericana, vol. 11, 1995, p. 527-545.
-
(1995)
Rev. Mat. Iberoamericana
, vol.11
, pp. 527-545
-
-
Kaufman, R.1
Wu, J.M.2
-
19
-
-
0003487676
-
On the harmonic measure of discontinous fractals
-
preprint, Lenningrad
-
[19] N. MAKAROV et A. VOLBERG, On the harmonic measure of discontinous fractals, preprint LOMI E-6-86, Lenningrad, 1986.
-
(1986)
LOMI E-6-86
-
-
Makarov, N.1
Volberg, A.2
-
20
-
-
0010176177
-
The dimension of the maximal measure for a polynomial map
-
[20] A. MANNING, The dimension of the maximal measure for a polynomial map, Ann. of Maths. (2), vol. 119, 1984, p. 425-430.
-
(1984)
Ann. of Maths. (2)
, vol.119
, pp. 425-430
-
-
Manning, A.1
-
21
-
-
0010068142
-
Mesures de Gibbs sur les cantor réguliers
-
[21] G. MICHON, Mesures de Gibbs sur les cantor réguliers, Ann. Inst. H. Poincaré, Phys. Théor., vol. 58, 1983, p. 267-285.
-
(1983)
Ann. Inst. H. Poincaré, Phys. Théor.
, vol.58
, pp. 267-285
-
-
Michon, G.1
-
22
-
-
21944433331
-
q spectrum of a measure
-
q spectrum of a measure, Proc. Amer. Math. Soc., vol. 125, 1997, p. 2943-2951.
-
(1997)
Proc. Amer. Math. Soc.
, vol.125
, pp. 2943-2951
-
-
Ngai, S.M.1
-
23
-
-
0010178789
-
An introduction to fractal measures and dimensions
-
[23] J. PEYRIÈRE, An introduction to fractal measures and dimensions, Lectures at Xiangfan, 1995.
-
(1995)
Lectures at Xiangfan
-
-
Peyrière, J.1
-
25
-
-
84971877468
-
Two definitions of fractional dimension
-
[25] C. TRICOT Jr, Two definitions of fractional dimension, Math. Proc. Comb. Phil. Soc., vol. 91, 1982, p. 57-74.
-
(1982)
Math. Proc. Comb. Phil. Soc.
, vol.91
, pp. 57-74
-
-
Tricot C., Jr.1
-
26
-
-
0001703726
-
Hausdorff dimension and quasisymmetric mappings
-
[26] P. TUKIA, Hausdorff dimension and quasisymmetric mappings, Math. Scand., vol. 65, 1989, p. 152-160.
-
(1989)
Math. Scand.
, vol.65
, pp. 152-160
-
-
Tukia, P.1
-
27
-
-
84956256298
-
Dimension, entropy and Lyapunov exponents
-
[27] L. YOUNG, Dimension, entropy and Lyapunov exponents, Ergod. Th. & Dynam. Sys., vol. 2, 1982, p. 109-124.
-
(1982)
Ergod. Th. & Dynam. Sys.
, vol.2
, pp. 109-124
-
-
Young, L.1
|