메뉴 건너뛰기




Volumn 10, Issue 1, 2001, Pages 39-47

A comparison of state-of-the-art classification techniques with application to cytogenetics

Author keywords

Bayesian neural network; Fluorescence in situ hybridisation (FISH); Multilayer perceptron; Naive Bayesian classifier; Signal classification; Support vector machine

Indexed keywords


EID: 0035531656     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s005210170016     Document Type: Article
Times cited : (25)

References (22)
  • 1
    • 0028938722 scopus 로고
    • CCD microscopy and image analysis of cells and chromosomes stained by fluorescence in situ hybridisation
    • Tanke HJ, Florijn RJ, Wiegant J, Raap AK, Vrolijk J. CCD microscopy and image analysis of cells and chromosomes stained by fluorescence in situ hybridisation. Histochemical Journal 1995; 27: 4-14
    • (1995) Histochemical Journal , vol.27 , pp. 4-14
    • Tanke, H.J.1    Florijn, R.J.2    Wiegant, J.3    Raap, A.K.4    Vrolijk, J.5
  • 6
    • 0002282678 scopus 로고
    • Probability, frequency and reasonable expectation
    • Cox RT. Probability, frequency and reasonable expectation. American Journal of Physics 1946; 14: 1-13
    • (1946) American Journal of Physics , vol.14 , pp. 1-13
    • Cox, R.T.1
  • 7
    • 0002600688 scopus 로고
    • Bayesian inductive inference and maximum entropy
    • Erickson GJ, Smith CR (eds). Foundations, Kluwer
    • Gull SF. Bayesian inductive inference and maximum entropy. In: Erickson GJ, Smith CR (eds), Maximum-Entropy and Bayesian Methods in Science and Engineering, Vol 1: Foundations, Kluwer, 1988: 53-74
    • (1988) Maximum-entropy and Bayesian Methods in Science and Engineering , vol.1 , pp. 53-74
    • Gull, S.F.1
  • 8
    • 0002704818 scopus 로고
    • A practical Bayesian framework for back-propagation networks
    • MacKay DJC. A practical Bayesian framework for back-propagation networks. Neural Computation 1992; 4: 448-472
    • (1992) Neural Computation , vol.4 , pp. 448-472
    • MacKay, D.J.C.1
  • 9
    • 0000065017 scopus 로고    scopus 로고
    • Ensemble learning in Bayesian neural networks
    • Bishop CM. (ed), Neural Networks and Machine Learning, Springer-Verlag
    • Barber D, Bishop CM. Ensemble learning in Bayesian neural networks. In: Bishop CM. (ed), Neural Networks and Machine Learning. Series F: Computer and Systems Sciences 168, Springer-Verlag, 1998; 215-237
    • (1998) Series F: Computer and Systems Sciences , vol.168 , pp. 215-237
    • Barber, D.1    Bishop, C.M.2
  • 12
    • 0003301456 scopus 로고    scopus 로고
    • Bayesian learning for neural networks
    • Springer-Verlag
    • Neal RM. Bayesian Learning for Neural Networks, Lecture Notes in Statistics 118. Springer-Verlag, 1996
    • (1996) Lecture Notes in Statistics , vol.118
    • Neal, R.M.1
  • 13
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges CJC. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 1998; 2: 121-167
    • (1998) Data Mining and Knowledge Discovery , vol.2 , pp. 121-167
    • Burges, C.J.C.1
  • 16
    • 0001024505 scopus 로고
    • On the uniform convergence of relative frequencies of events to their probabilities
    • Vapnik VN, Chervonenkis AY. On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and its Applications 1971; 16: 264-280
    • (1971) Theory of Probability and its Applications , vol.16 , pp. 264-280
    • Vapnik, V.N.1    Chervonenkis, A.Y.2
  • 21
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale svm learning practical
    • Schölkopf B, Burges CJC, Smola AJ. (eds), MIT Press
    • Joachims T. Making large-scale svm learning practical. In: Schölkopf B, Burges CJC, Smola AJ. (eds), Advances in Kernel Methods: Support Vector Learning, MIT Press, 1998; 169-184
    • (1998) Advances in Kernel Methods: Support Vector Learning , pp. 169-184
    • Joachims, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.