메뉴 건너뛰기




Volumn 10, Issue 1, 2001, Pages 48-55

An empirical evaluation of probability estimation with neural networks

Author keywords

Chi square statistic; Goodness of fit tests; Multilayer feedforward neural networks; Probability estimation; Quickprop

Indexed keywords


EID: 0035531655     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s005210170017     Document Type: Article
Times cited : (5)

References (44)
  • 2
    • 0007309779 scopus 로고    scopus 로고
    • A short proof of the posterior probability property of classifier neural networks
    • Rojas R. A short proof of the posterior probability property of classifier neural networks. Neural Computation 1996; 8: 41-43
    • (1996) Neural Computation , vol.8 , pp. 41-43
    • Rojas, R.1
  • 4
    • 0001595997 scopus 로고
    • Neural network classifiers estimate Bayesian a posteriori probabilities
    • Richard MD, Lippmann RP. Neural network classifiers estimate Bayesian a posteriori probabilities. Neural Computation 1991; 3: 461-483
    • (1991) Neural Computation , vol.3 , pp. 461-483
    • Richard, M.D.1    Lippmann, R.P.2
  • 6
    • 0025597157 scopus 로고
    • Neural network classification: A bayesian interpretation
    • Wan EA. Neural network classification: a bayesian interpretation. IEEE Trans Neural Networks 1990; 1: 303-305
    • (1990) IEEE Trans Neural Networks , vol.1 , pp. 303-305
    • Wan, E.A.1
  • 7
    • 0000646059 scopus 로고
    • Learning internal representations by error propagation
    • Rumelhart DE, McClelland JL (eds), MIT Press
    • Rumelhart DE, Hinton GE, Williams RJ. Learning internal representations by error propagation. In Rumelhart DE, McClelland JL (eds), Parallel Distributed Processing, Vol 1, MIT Press, 1986; 318-459
    • (1986) Parallel Distributed Processing , vol.1 , pp. 318-459
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 8
    • 0026278967 scopus 로고
    • An empirical study of the ability of back propagation to approximate posterior probabilities
    • Kalish ML, Harris CL. An empirical study of the ability of back propagation to approximate posterior probabilities. IEEE Int Joint Conf on Neural Networks 1991; 3: 2247-2252
    • (1991) IEEE Int Joint Conf on Neural Networks , vol.3 , pp. 2247-2252
    • Kalish, M.L.1    Harris, C.L.2
  • 10
    • 0012195187 scopus 로고
    • Some asymtotic results for learning in single hidden-layer feedforward network models
    • White H. Some asymtotic results for learning in single hidden-layer feedforward network models. J American Statistical Assoc 1989; 84: 1003-1013
    • (1989) J American Statistical Assoc , vol.84 , pp. 1003-1013
    • White, H.1
  • 12
    • 0031513627 scopus 로고    scopus 로고
    • Modular neural networks for medical prognosis: Quantifying the benefits of combining neural networks for survival prediction
    • Ohno-Muchado L, Musen MA. Modular neural networks for medical prognosis: quantifying the benefits of combining neural networks for survival prediction. Connection Science 1997; 9: 71-86
    • (1997) Connection Science , vol.9 , pp. 71-86
    • Ohno-Muchado, L.1    Musen, M.A.2
  • 14
    • 84872170445 scopus 로고
    • Goodness of fit tests for the multiple logistic regression model
    • Hosmer DW, Lemeshow S. Goodness of fit tests for the multiple logistic regression model. Communications in Statistics 1980; 9: 1043-1069
    • (1980) Communications in Statistics , vol.9 , pp. 1043-1069
    • Hosmer, D.W.1    Lemeshow, S.2
  • 15
    • 0000683069 scopus 로고
    • A chi-square statistic with random cell boundaries
    • Moore DS. A chi-square statistic with random cell boundaries. Ann Math Statistics 1971; 42: 147-156
    • (1971) Ann Math Statistics , vol.42 , pp. 147-156
    • Moore, D.S.1
  • 18
    • 0001927827 scopus 로고
    • Robustness of homogeneity tests in 2 × n tables
    • Lewontin RC, Felsenstein J. Robustness of homogeneity tests in 2 × n tables. Biometrics 1965; 21: 19-33
    • (1965) Biometrics , vol.21 , pp. 19-33
    • Lewontin, R.C.1    Felsenstein, J.2
  • 19
  • 21
    • 0025284041 scopus 로고
    • A new characterisation of injury severity
    • Champion HR, Copes WS, Sacco WJ. A new characterisation of injury severity. J Trauma 1990; 30: 539-546
    • (1990) J Trauma , vol.30 , pp. 539-546
    • Champion, H.R.1    Copes, W.S.2    Sacco, W.J.3
  • 23
  • 25
    • 0003000735 scopus 로고
    • Faster-learning variations on back-propagation: An empirical study
    • Fahlman SE. Faster-learning variations on back-propagation: an empirical study. Proc Connectionist Models Summer School, 1988; 38-51
    • (1988) Proc Connectionist Models Summer School , pp. 38-51
    • Fahlman, S.E.1
  • 27
    • 0028747894 scopus 로고
    • A comprehensive study of the backpropagation algorithm and modifications
    • Sidani A, Sidani T. A comprehensive study of the backpropagation algorithm and modifications. Proceedings of SOUTHCON 1994; 80-84
    • (1994) Proceedings of SOUTHCON , pp. 80-84
    • Sidani, A.1    Sidani, T.2
  • 31
    • 0031099758 scopus 로고    scopus 로고
    • Electromagnetic field inversion using the quickprop method
    • Rekanos JT, Tsiboukis TD. Electromagnetic field inversion using the Quickprop Method. IEEE Trans Magnetics 1997; 33: 1872-1875
    • (1997) IEEE Trans Magnetics , vol.33 , pp. 1872-1875
    • Rekanos, J.T.1    Tsiboukis, T.D.2
  • 36
    • 0030511711 scopus 로고    scopus 로고
    • Predicting criminal recidivism: A comparison of neural network models with statistical methods
    • Caulkins J, Cohen J, Gorr W, Wei J. Predicting criminal recidivism: a comparison of neural network models with statistical methods. J Criminal Justice 1996; 24: 227-240
    • (1996) J Criminal Justice , vol.24 , pp. 227-240
    • Caulkins, J.1    Cohen, J.2    Gorr, W.3    Wei, J.4
  • 39
    • 21344493313 scopus 로고
    • Neural networks for the MS/OR analyst an application bibliography
    • Sharda R. Neural networks for the MS/OR analyst an application bibliography. Interfaces 1994; 24: 116-130
    • (1994) Interfaces , vol.24 , pp. 116-130
    • Sharda, R.1
  • 40
    • 84997479670 scopus 로고
    • Managerial applications of neural networks: The case of bank failure predictions
    • Tam KY, Kiang MY. Managerial applications of neural networks: the case of bank failure predictions. Management Science 1992; 38: 926-947
    • (1992) Management Science , vol.38 , pp. 926-947
    • Tam, K.Y.1    Kiang, M.Y.2
  • 41
    • 84988828223 scopus 로고
    • Neural networks: A new tool for prediction of thrift failures
    • Salchenberger LM, Cinar EM, Lash NA. Neural networks: a new tool for prediction of thrift failures. Decision Sciences 1992; 23: 899-916
    • (1992) Decision Sciences , vol.23 , pp. 899-916
    • Salchenberger, L.M.1    Cinar, E.M.2    Lash, N.A.3
  • 43
    • 0000170514 scopus 로고    scopus 로고
    • Survival prediction in the intensive care unit: A comparison of neural networks and binary logit regression
    • Goss EP, Ramchandani H. Survival prediction in the intensive care unit: a comparison of neural networks and binary logit regression. Socio-Economic Planning Sciences 1998; 32: 189-198
    • (1998) Socio-economic Planning Sciences , vol.32 , pp. 189-198
    • Goss, E.P.1    Ramchandani, H.2
  • 44
    • 0003350465 scopus 로고
    • Making brain waves
    • January 15
    • Baatz EB. Making brain waves. CIO Magazine 1995; January 15 (http://www.cio.com/archive/cio-011596-neural-feature-content.html)
    • (1995) CIO Magazine
    • Baatz, E.B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.