-
1
-
-
0001103678
-
The critical contact process dies out
-
BEZUIDENHOUT, C. and GRIMMETT, G. (1990). The critical contact process dies out. Ann. Probab. 18 1462-1482.
-
(1990)
Ann. Probab.
, vol.18
, pp. 1462-1482
-
-
Bezuidenhout, C.1
Grimmett, G.2
-
3
-
-
0000393829
-
Density and uniqueness in percolation
-
BURTON, R. M. and KEANE, M. (1989). Density and uniqueness in percolation. Comm. Math. Phys. 121 501-505.
-
(1989)
Comm. Math. Phys.
, vol.121
, pp. 501-505
-
-
Burton, R.M.1
Keane, M.2
-
5
-
-
0001374307
-
Additive set-valued Markov processes and graphical methods
-
HARRIS, T. E. (1978). Additive set-valued Markov processes and graphical methods. Ann. Probab. 6 355-378.
-
(1978)
Ann. Probab.
, vol.6
, pp. 355-378
-
-
Harris, T.E.1
-
6
-
-
0034407298
-
Anisotropic branching random walks on homogeneous trees
-
HUETER, I. and LALLEY, S. (2000). Anisotropic branching random walks on homogeneous trees. Probab. Theory Related Fields 116 57-88.
-
(2000)
Probab. Theory Related Fields
, vol.116
, pp. 57-88
-
-
Hueter, I.1
Lalley, S.2
-
7
-
-
0032382391
-
Limit set of a weakly supercritical contact process on a homogeneous tree
-
LALLEY, S. and SELLKE, T. (1998). Limit set of a weakly supercritical contact process on a homogeneous tree. Ann. Probab. 26 644-657.
-
(1998)
Ann. Probab.
, vol.26
, pp. 644-657
-
-
Lalley, S.1
Sellke, T.2
-
10
-
-
0030371517
-
Multiple transition points for the contact process on the binary tree
-
LIGGETT, T. M. (1996). Multiple transition points for the contact process on the binary tree. Ann. Probab. 24 1675-1710
-
(1996)
Ann. Probab.
, vol.24
, pp. 1675-1710
-
-
Liggett, T.M.1
-
11
-
-
0040516844
-
Branching random walks and contact processes on homogeneous trees
-
LIGGETT, T. M. (1996). Branching random walks and contact processes on homogeneous trees. Probab. Theory Related Fields 106 495-519.
-
(1996)
Probab. Theory Related Fields
, vol.106
, pp. 495-519
-
-
Liggett, T.M.1
-
13
-
-
0034345423
-
Phase transitions on nonamenable graphs
-
LYONS, R. (2000). Phase transitions on nonamenable graphs. J. Math. Phys. 41 1099-1126.
-
(2000)
J. Math. Phys.
, vol.41
, pp. 1099-1126
-
-
Lyons, R.1
-
16
-
-
0000771579
-
The contact process on trees
-
PEMANTLE, R. (1992). The contact process on trees. Ann. Probab. 20 2089-2116.
-
(1992)
Ann. Probab.
, vol.20
, pp. 2089-2116
-
-
Pemantle, R.1
-
17
-
-
0033235603
-
Infinitely many contact process transitions on a tree
-
SALZANO, M. (1999). Infinitely many contact process transitions on a tree. J. Statist. Phys. 97 817-826.
-
(1999)
J. Statist. Phys.
, vol.97
, pp. 817-826
-
-
Salzano, M.1
-
18
-
-
0031312118
-
The second lowest extremal invariant measure of the contact process
-
SALZANO, M. and SCHONMANN, R. H. (1997). The second lowest extremal invariant measure of the contact process. Ann. Probab. 25 1846-1871.
-
(1997)
Ann. Probab.
, vol.25
, pp. 1846-1871
-
-
Salzano, M.1
Schonmann, R.H.2
-
19
-
-
0032379304
-
A new proof that for the contact process on homogeneous trees local survival implies complete convergence
-
SALZANO, M. and SCHONMANN, R. H. (1998). A new proof that for the contact process on homogeneous trees local survival implies complete convergence. Ann. Probab. 26 1251-1258.
-
(1998)
Ann. Probab.
, vol.26
, pp. 1251-1258
-
-
Salzano, M.1
Schonmann, R.H.2
-
20
-
-
0033412033
-
The second lowest extremal invariant measure of the contact process II
-
SALZANO, M. and SCHONMANN, R. H. (1999). The second lowest extremal invariant measure of the contact process II. Ann. Probab. 27 845-875.
-
(1999)
Ann. Probab.
, vol.27
, pp. 845-875
-
-
Salzano, M.1
Schonmann, R.H.2
-
22
-
-
0030360082
-
The existence of an intermediate phase for the contact process on trees
-
STACEY, A. M. (1996). The existence of an intermediate phase for the contact process on trees. Ann. Probab. 24 1711-1726.
-
(1996)
Ann. Probab.
, vol.24
, pp. 1711-1726
-
-
Stacey, A.M.1
|