메뉴 건너뛰기




Volumn 25, Issue 4, 1997, Pages 1846-1871

The second lowest extremal invariant measure of the contact process

Author keywords

Complete convergence; Contact process; Critical points; Ergodic behavior; Graphs; Invariant measures; Partial convergence

Indexed keywords


EID: 0031312118     PISSN: 00911798     EISSN: None     Source Type: Journal    
DOI: 10.1214/aop/1023481114     Document Type: Article
Times cited : (18)

References (16)
  • 1
    • 0001103678 scopus 로고
    • The critical contact process dies out
    • BEZUIDENHOUT, C. and GRIMMETT, G. (1990). The critical contact process dies out. Ann. Probab. 18 1462-1482.
    • (1990) Ann. Probab. , vol.18 , pp. 1462-1482
    • Bezuidenhout, C.1    Grimmett, G.2
  • 3
    • 0003300882 scopus 로고
    • Supercritical contact processes on ℤ
    • DURRETT, R. and GRIFFEATH, D. (1983). Supercritical contact processes on ℤ. Ann. Probab. 11 1-15.
    • (1983) Ann. Probab. , vol.11 , pp. 1-15
    • Durrett, R.1    Griffeath, D.2
  • 4
    • 0000157884 scopus 로고
    • Intermediate phase for the contact process on a tree
    • DURRETT, R. and SCHINAZI, R. B. (1995). Intermediate phase for the contact process on a tree. Ann. Probab. 23 668-673.
    • (1995) Ann. Probab. , vol.23 , pp. 668-673
    • Durrett, R.1    Schinazi, R.B.2
  • 5
    • 0000129207 scopus 로고
    • Limit theorems for non-ergodic set-valued Markov processes
    • GRIFFEATH, D. (1978). Limit theorems for non-ergodic set-valued Markov processes. Ann. Probab. 6 379-387.
    • (1978) Ann. Probab. , vol.6 , pp. 379-387
    • Griffeath, D.1
  • 6
    • 0000829680 scopus 로고
    • Contact interactions in a lattice
    • HARRIS, T. E. (1974). Contact interactions in a lattice. Ann. Probab. 2 969-988.
    • (1974) Ann. Probab. , vol.2 , pp. 969-988
    • Harris, T.E.1
  • 8
    • 0030371517 scopus 로고    scopus 로고
    • Multiple transition points for the contact process on the binary tree
    • LIGGETT, T. M. (1996a). Multiple transition points for the contact process on the binary tree. Ann. Probab. 24 1675-1710.
    • (1996) Ann. Probab. , vol.24 , pp. 1675-1710
    • Liggett, T.M.1
  • 9
    • 0040516844 scopus 로고    scopus 로고
    • Branching random walks and contact processes on homogeneous trees
    • LIGGETT, T. M. (1996b). Branching random walks and contact processes on homogeneous trees. Probab. Theory Related Fields 106 495-519.
    • (1996) Probab. Theory Related Fields , vol.106 , pp. 495-519
    • Liggett, T.M.1
  • 11
    • 21344495600 scopus 로고
    • The critical contact process on a homogeneous tree
    • MORROW, G. J., SCHINAZI, R. B. and ZHANG, Y. (1994). The critical contact process on a homogeneous tree. J. Appl. Probab. 31 250-255.
    • (1994) J. Appl. Probab. , vol.31 , pp. 250-255
    • Morrow, G.J.1    Schinazi, R.B.2    Zhang, Y.3
  • 12
    • 0000771579 scopus 로고
    • The contact process on trees
    • PEMANTLE, R. (1992). The contact process on trees. Ann. Probab. 20 2089-2116.
    • (1992) Ann. Probab. , vol.20 , pp. 2089-2116
    • Pemantle, R.1
  • 13
    • 0040540735 scopus 로고
    • A new proof of the complete convergence theorem for contact processes in several dimensions with large infection parameter
    • SCHONMANN, R. H. (1987a). A new proof of the complete convergence theorem for contact processes in several dimensions with large infection parameter. Ann. Probab. 15 382-387.
    • (1987) Ann. Probab. , vol.15 , pp. 382-387
    • Schonmann, R.H.1
  • 15
    • 0030360082 scopus 로고    scopus 로고
    • The existence of an intermediate phase for the contact process on trees
    • STAGEY, A. M. (1996). The existence of an intermediate phase for the contact process on trees. Ann. Probab. 24 1711-1726.
    • (1996) Ann. Probab. , vol.24 , pp. 1711-1726
    • Stagey, A.M.1
  • 16
    • 0040454827 scopus 로고    scopus 로고
    • The complete convergence theorem of the contact process on trees
    • ZHANG, Y. (1996). The complete convergence theorem of the contact process on trees. Ann. Probab. 24 1408-1443.
    • (1996) Ann. Probab. , vol.24 , pp. 1408-1443
    • Zhang, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.