메뉴 건너뛰기




Volumn 38, Issue 3, 2001, Pages 685-695

On the existence of the stable birth-type distribution in a general branching process cell cycle model with unequal cell division

Author keywords

Branching process; Cell population; Crump Mode Jagers; Perron Frobenius; Stable type distribution; Unequal cell division

Indexed keywords


EID: 0035438332     PISSN: 00219002     EISSN: None     Source Type: Journal    
DOI: 10.1239/jap/1005091032     Document Type: Article
Times cited : (7)

References (9)
  • 1
    • 0007227298 scopus 로고    scopus 로고
    • An application of general branching processes to a cell cycle model with two uncoupled subcycles and unequal cell division
    • ALEXANDERSSON, M. (2000). An application of general branching processes to a cell cycle model with two uncoupled subcycles and unequal cell division. Int. J. Appl. Math Comput. Sci. 10, 131-145.
    • (2000) Int. J. Appl. Math Comput. Sci. , vol.10 , pp. 131-145
    • Alexandersson, M.1
  • 2
    • 0014108737 scopus 로고
    • Cell growth and division I: A mathematical model with applications to cell volume distributions in mammalian suspension cultures
    • BELL, G. I. AND ANDERSON, E. C. (1967). Cell growth and division I: a mathematical model with applications to cell volume distributions in mammalian suspension cultures. Biophys. J. 7, 329-351.
    • (1967) Biophys. J. , vol.7 , pp. 329-351
    • Bell, G.I.1    Anderson, E.C.2
  • 3
    • 0000387615 scopus 로고
    • General branching processes as Markov fields
    • JAGERS, P. (1989). General branching processes as Markov fields. Stoch. Proc. Appl. 32, 183-242.
    • (1989) Stoch. Proc. Appl. , vol.32 , pp. 183-242
    • Jagers, P.1
  • 4
    • 21144481374 scopus 로고
    • Stabilities and instabilities in population dynamics
    • JAGERS, P. (1992). Stabilities and instabilities in population dynamics. J. Appl. Prob. 29, 770-780.
    • (1992) J. Appl. Prob. , vol.29 , pp. 770-780
    • Jagers, P.1
  • 5
    • 84925204496 scopus 로고    scopus 로고
    • The deterministic evolution of general branching populations
    • eds M. de Gunst, C. Klaassen and A. van der Vaart. Institute of Mathematical Statistics, Beachwood, OH
    • JAGERS, P. (2000). The deterministic evolution of general branching populations. In State of the Art in Statistics and Probability Theory. Festschrift for Willem R. van Zwet, eds M. de Gunst, C. Klaassen and A. van der Vaart. Institute of Mathematical Statistics, Beachwood, OH.
    • (2000) State of the Art in Statistics and Probability Theory. Festschrift for Willem R. Van Zwet
    • Jagers, P.1
  • 6
    • 0003112518 scopus 로고    scopus 로고
    • The asymptotic composition of multitype branching populations
    • Séminaire de Probabilités eds J. Azéma, M. Emery and M. Yor. Springer, Berlin
    • JAGERS, P. AND NERMAN, O. (1996). The asymptotic composition of multitype branching populations. In Séminaire de Probabilités (Lecture Notes Math. 1626), eds J. Azéma, M. Emery and M. Yor. Springer, Berlin, pp. 40-54.
    • (1996) Lecture Notes Math. , vol.1626 , pp. 40-54
    • Jagers, P.1    Nerman, O.2
  • 8
    • 0007163188 scopus 로고
    • Preprint 1992-20. Department of Mathematics, Chalmers University of Technology and Göteborg University
    • SHURENKOV, V. (1992). On the existence of a Malthusian parameter. Preprint 1992-20. Department of Mathematics, Chalmers University of Technology and Göteborg University
    • (1992) On the Existence of a Malthusian Parameter
    • Shurenkov, V.1
  • 9
    • 0007240552 scopus 로고    scopus 로고
    • A branching process version of the Bell-Anderson cell population model
    • TAIB, Z. (1999). A branching process version of the Bell-Anderson cell population model. Commun. Statist. Stoch. Models 15, 719-729.
    • (1999) Commun. Statist. Stoch. Models , vol.15 , pp. 719-729
    • Taib, Z.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.