메뉴 건너뛰기




Volumn 15, Issue 4, 1999, Pages 719-729

A branching process version of the Bell-Anderson cell population model

Author keywords

Multitype branching process; Sister sister cell cycle time correlation; Stable size distribution; curve; curve

Indexed keywords


EID: 0007240552     PISSN: 08820287     EISSN: None     Source Type: Journal    
DOI: 10.1080/15326349908807559     Document Type: Article
Times cited : (3)

References (19)
  • 1
    • 33747429733 scopus 로고    scopus 로고
    • An application of general branching processes to a cell cycle model with two uncoupled subcycles and unequal cell division
    • Zakopane, Poland
    • Alexandersson, M., An application of general branching processes to a cell cycle model with two uncoupled subcycles and unequal cell division. To appear in the Proceedings of the 5th International Conference on Mathematical Population Dynamics, Zakopane, Poland (1998).
    • (1998) Proceedings of the 5th International Conference on Mathematical Population Dynamics
    • Alexandersson, M.1
  • 2
    • 0029321234 scopus 로고
    • A survey of structured cell population dynamics
    • Arino, O., A survey of structured cell population dynamics. Acta Biotheoretica, 43 (1995), 3-25.
    • (1995) Acta Biotheoretica , vol.43 , pp. 3-25
    • Arino, O.1
  • 3
    • 0027678317 scopus 로고
    • Comparison of approaches to modeling of cell population dynamics
    • Arino, O. and Rimmel, M., Comparison of approaches to modeling of cell population dynamics. SIAM Journal of Applied Mathematics, 53 (1993), 1480-1504.
    • (1993) SIAM Journal of Applied Mathematics , vol.53 , pp. 1480-1504
    • Arino, O.1    Rimmel, M.2
  • 5
    • 0014108737 scopus 로고
    • Cell growth and division I: A mathematical model with applications to cell volume distributions in mammalian suspension cultures
    • Bell, G.I. and Anderson E.C., Cell growth and division I: A mathematical model with applications to cell volume distributions in mammalian suspension cultures. Bioph. J., 7 (1967), 329-351.
    • (1967) Bioph. J. , vol.7 , pp. 329-351
    • Bell, G.I.1    Anderson, E.C.2
  • 6
    • 0043121203 scopus 로고
    • On the theory of age-dependent stochastic branching processes
    • Bellman, R. and Harris, T.E., On the theory of age-dependent stochastic branching processes. Proc. Nat. Acad. Sci., 34 (1948), 601-604.
    • (1948) Proc. Nat. Acad. Sci. , vol.34 , pp. 601-604
    • Bellman, R.1    Harris, T.E.2
  • 7
    • 0022136079 scopus 로고
    • An eigen-value problem related to cell growth
    • Heijmann, H.J.A.M., An eigen-value problem related to cell growth. J. Math. Anal. Appl., 11 (1985), 253-280.
    • (1985) J. Math. Anal. Appl. , vol.11 , pp. 253-280
    • Heijmann, H.J.A.M.1
  • 8
    • 0348222090 scopus 로고
    • General theory of the cell cycle dynamics based on branching processes in varying environment
    • Rotenberg, M., ed. Elsevier/North Holland, New York
    • Kimmel, M., General theory of the cell cycle dynamics based on branching processes in varying environment. In Biomathematics and Cell Kinetics, Rotenberg, M., ed. Elsevier/North Holland, New York (1981), 357-375.
    • (1981) Biomathematics and Cell Kinetics , pp. 357-375
    • Kimmel, M.1
  • 9
    • 0000387615 scopus 로고
    • Branching processes as Markov fields
    • Jagers, P., Branching processes as Markov fields. Stochastic Processes Appl., 32 (1989), 183-212.
    • (1989) Stochastic Processes Appl. , vol.32 , pp. 183-212
    • Jagers, P.1
  • 10
    • 85034496076 scopus 로고    scopus 로고
    • The deterministic evolution of general branching populations
    • O. Arino, D. Axelrod and M. Kimmel (eds.), Wuertz Publishing, Winnipeg
    • Jagers, P., The deterministic evolution of general branching populations. In: O. Arino, D. Axelrod and M. Kimmel (eds.), Mathematical Population Dynamics 3. Wuertz Publishing, Winnipeg (1996).
    • (1996) Mathematical Population Dynamics 3
    • Jagers, P.1
  • 11
    • 0003112518 scopus 로고    scopus 로고
    • The asymptotic composition of multi-type branching populations
    • M. Yor, ed., Séminaire de Probabilités, Springer Verlag.
    • Jagers, P. and Nerman, O., The asymptotic composition of multi-type branching populations. In M. Yor, ed., Séminaire de Probabilités, Springer Verlag. Lecture Notes in Mathematics (1996).
    • (1996) Lecture Notes in Mathematics
    • Jagers, P.1    Nerman, O.2
  • 15
    • 0029113152 scopus 로고
    • Cell cycle progression: Simulation of uncoupled subcycles of DNA replication and cell growth
    • Sennerstam, R. and Strömberg, J. O., Cell cycle progression: simulation of uncoupled subcycles of DNA replication and cell growth. J. Theor. Biol., 175 (1995), 177-189.
    • (1995) J. Theor. Biol. , vol.175 , pp. 177-189
    • Sennerstam, R.1    Strömberg, J.O.2
  • 16
    • 0027751204 scopus 로고
    • A note on modelling the dynamics of budding yeast populations using branching processes
    • Taib, Z., A note on modelling the dynamics of budding yeast populations using branching processes. J. Math. Biol., 31 (1993), 805-815.
    • (1993) J. Math. Biol. , vol.31 , pp. 805-815
    • Taib, Z.1
  • 17
    • 33747414649 scopus 로고
    • Branching processes and functional differential equations determining steady-size distributions in cell populations
    • Taib, Z., Branching processes and functional differential equations determining steady-size distributions in cell populations. J. Appl. Prob., 32 (1995), 1-10.
    • (1995) J. Appl. Prob. , vol.32 , pp. 1-10
    • Taib, Z.1
  • 18
    • 0023031739 scopus 로고
    • Sloppy size control of the cell division cycle
    • Tyson, J. and Diekmann, O., Sloppy size control of the cell division cycle. J. Theor. Biol., 118 (1986), 405-426.
    • (1986) J. Theor. Biol. , vol.118 , pp. 405-426
    • Tyson, J.1    Diekmann, O.2
  • 19
    • 84966207881 scopus 로고
    • An operator-theoretic formulation of asynchronous exponential growth
    • Webb, G.F., An operator-theoretic formulation of asynchronous exponential growth. Trans. AMS, 303 (1987), 751-763.
    • (1987) Trans. AMS , vol.303 , pp. 751-763
    • Webb, G.F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.