-
1
-
-
33747656279
-
-
Clustering and Classification, P. Arabie, L.J. Hubert, and G. De Soete, eds. Singapore: World Scientific, 1996.
-
Clustering and Classification, P. Arabie, L.J. Hubert, and G. De Soete, Eds. Singapore: World Scientific, 1996.
-
-
-
3
-
-
0000489449
-
-
vol. 27, no.3, pp. 667-674, 1998.
-
S.B. Caudill and R.N. Acharya,Maximum-Likelihood Estimation of a Mixture of Normal Regressions: Starting Values and Singularities, Comm. Statistics-Simulation, vol. 27, no.3, pp. 667-674, 1998.
-
Maximum-Likelihood Estimation of a Mixture of Normal Regressions: Starting Values and Singularities, Comm. Statistics-Simulation
-
-
Caudill, S.B.1
Acharya, R.N.2
-
5
-
-
33747669929
-
-
Advances in Intelligent Data Analysis, D.J. Hand, J.N. Kok, and M. Berthold, eds. Berlin: Heidelberg, Springer-Verlag, 1999.
-
Advances in Intelligent Data Analysis, D.J. Hand, J.N. Kok, and M. Berthold, Eds. Berlin: Heidelberg, Springer-Verlag, 1999.
-
-
-
7
-
-
0032028224
-
-
vol. 20
-
G. Danuser and M. Stricker,Parametric Model Fitting: From Inlier Characterization to Outlier Detection, IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 20, no. 2, pp. 263-280, Feb. 1998.
-
Parametric Model Fitting: from Inlier Characterization to Outlier Detection, IEEE Trans. Pattern Analysis and Machine Intelligence
, Issue.4
-
-
Danuser, G.1
Stricker, M.2
-
8
-
-
0031139176
-
-
vol. 5
-
R.N. Dave and R. Krishnapuram,Robust Clustering Methods: A Unified View, IEEE Trans. Fuzzy Systems, vol. 5, no. 2, pp. 270-293, May 1997.
-
Robust Clustering Methods: a Unified View, IEEE Trans. Fuzzy Systems
, Issue.4
-
-
Dave, R.N.1
Krishnapuram, R.2
-
9
-
-
0031275054
-
-
vol. 13, pp. 99-115, 1997.
-
U. Fayyad and P. Stolorz,Data Mining and KDD: Promise and Challenges, Future Generation Computer Systems, vol. 13, pp. 99-115, 1997.
-
Data Mining and KDD: Promise and Challenges, Future Generation Computer Systems
-
-
Fayyad, U.1
Stolorz, P.2
-
10
-
-
0002109783
-
-
1-61. Berlin Heidelberg: Springer-Verlag, 1994.
-
J.H. Friedman,An Overview of Predictive Learning and Function Approximation, From Statistics to Neural Networks: Theory and Pattern Recognition Applications, V. Cherkassky, J.H. Friedman, and H. Wechsler, eds., pp. 1-61. Berlin Heidelberg: Springer-Verlag, 1994.
-
An Overview of Predictive Learning and Function Approximation, from Statistics to Neural Networks: Theory and Pattern Recognition Applications, V. Cherkassky, J.H. Friedman, and H. Wechsler, Eds., Pp.
-
-
Friedman, J.H.1
-
11
-
-
21744454917
-
-
vol. 1, pp.11-28, 1997.
-
C. Glymour, D. Madigan, D. Pregibon, and P. Symth,Statistical Themes and Lessons for Data Mining, Data Mining and Knowledge Discovery, vol. 1, pp.11-28, 1997.
-
Statistical Themes and Lessons for Data Mining, Data Mining and Knowledge Discovery
-
-
Glymour, C.1
Madigan, D.2
Pregibon, D.3
Symth, P.4
-
13
-
-
0027647031
-
-
vol. 1
-
R.J. Hathaway and J.C. Bezdek,Switching Regression Models and Fuzzy Clustering, IEEE Trans. Fuzzy Systems, vol. 1, no. 3, pp. 195-204, Aug. 1993.
-
Switching Regression Models and Fuzzy Clustering, IEEE Trans. Fuzzy Systems
, Issue.4
-
-
Hathaway, R.J.1
Bezdek, J.C.2
-
15
-
-
0031272147
-
-
vol. 13, pp. 117-134, 1997.
-
J.R.M. Hosking, E.P.D. Pednault, and M. Sudan,A Statistical Perspective on Data Mining, Future Generation Computer Systems, vol. 13, pp. 117-134, 1997.
-
A Statistical Perspective on Data Mining, Future Generation Computer Systems
-
-
Hosking, J.R.M.1
Pednault, E.P.D.2
Sudan, M.3
-
16
-
-
0030284618
-
-
vol. 39, pp. 58-64, 1996.
-
T. Imielinski and H. Mannila,A Database Perspective on Knowledge Discovery, Comm. ACM, vol. 39, pp. 58-64, 1996.
-
A Database Perspective on Knowledge Discovery, Comm. ACM
-
-
Imielinski, T.1
Mannila, H.2
-
17
-
-
0032136807
-
-
vol. 20
-
Q. Ji and R.M. Haralick,Breakpoint Detection Using Covariance Propagation, IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 20, no. 8, pp. 845-951, Aug. 1998.
-
Breakpoint Detection Using Covariance Propagation, IEEE Trans. Pattern Analysis and Machine Intelligence
, Issue.4
-
-
Ji, Q.1
Haralick, R.M.2
-
20
-
-
0031208215
-
-
vol. 5
-
E. Kim, M. Park, S. Ji, and M. Park,A New Approach to Fuzzy Modeling, IEEE Trans. Fuzzy Systems, vol. 5, no. 3, pp. 328-337, 1997.
-
A New Approach to Fuzzy Modeling, IEEE Trans. Fuzzy Systems
, Issue.4
-
-
Kim, E.1
Park, M.2
Ji, S.3
Park, M.4
-
21
-
-
0030380840
-
-
vol. 23
-
K.-N. Lau, C.-H. Yang, and G.V. Post,Stochastic Preference Modeling within a Switching Regression Framework, Computers Ops. Res., vol. 23, no. 12, pp. 1163-1169, 1996.
-
Stochastic Preference Modeling within a Switching Regression Framework, Computers Ops. Res.
, Issue.45
-
-
Lau, K.-N.1
Yang, C.-H.2
Post, G.V.3
-
25
-
-
33747696383
-
-
Genetic Algorithms and Evolution Strategies in Engineering and Computer Science, D. Quagliarella, J. P'eriaux, C. Poloni, and G. Winter, eds. England: John Wiley & Sons, 1998.
-
Genetic Algorithms and Evolution Strategies in Engineering and Computer Science, D. Quagliarella, J. P'eriaux, C. Poloni, and G. Winter, Eds. England: John Wiley & Sons, 1998.
-
-
-
26
-
-
84950321853
-
-
vol. 73
-
R.E. Quandt and J.B. Ramsey,Estimating Mixtures of Normal Distributions and Switching Regressions, J. Am. Statistical Assoc., vol. 73, no. 364, pp. 730-738, 1978.
-
Estimating Mixtures of Normal Distributions and Switching Regressions, J. Am. Statistical Assoc.
, Issue.4
-
-
Quandt, R.E.1
Ramsey, J.B.2
-
27
-
-
0021404166
-
-
vol. 26
-
R.A. Redner and H.F. Walker,Mixture Densities, Maximum-Likelihood and the EM Algorithm, SIAM Rev., vol. 26, no. 2, pp. 195-239, 1984.
-
Mixture Densities, Maximum-Likelihood and the EM Algorithm, SIAM Rev.
, Issue.4
-
-
Redner, R.A.1
Walker, H.F.2
-
33
-
-
0030242069
-
-
vol. 5
-
X. Zhuang, Y. Huang, K. Palaniappan, and Y. Zhao,Gaussian Mixture Density Modeling, Decomposition, and Applications, IEEE Trans. Image Processing, vol. 5, no. 9, pp. 1293-1302, 1996.
-
Gaussian Mixture Density Modeling, Decomposition, and Applications, IEEE Trans. Image Processing
, Issue.454
-
-
Zhuang, X.1
Huang, Y.2
Palaniappan, K.3
Zhao, Y.4
-
34
-
-
0026626412
-
-
vol. 14
-
X. Zhuang, T. Wang, and P. Zhang,A Highly Robust Estimator through Partial-Likelihood Function Modeling and Its Application in Computer Vision, IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 14, no. 1, pp. 19-35, Jan. 1992.
-
A Highly Robust Estimator through Partial-Likelihood Function Modeling and Its Application in Computer Vision, IEEE Trans. Pattern Analysis and Machine Intelligence
, Issue.14
-
-
Zhuang, X.1
Wang, T.2
Zhang, P.3
|