메뉴 건너뛰기




Volumn 48, Issue 5, 2001, Pages 533-542

A probabilistic solution to the MEG inverse problem via MCMC methods: The reversible jump and parallel tempering algorithms

Author keywords

Bayesian model; Inverse problem; Magnetoencephalography (MEG); Markov chain Monte Carlo methods (MCMC)

Indexed keywords

ALGORITHMS; COMPUTER SIMULATION; NEUROLOGY; PROBABILITY DISTRIBUTIONS;

EID: 0035035210     PISSN: 00189294     EISSN: None     Source Type: Journal    
DOI: 10.1109/10.918592     Document Type: Article
Times cited : (36)

References (22)
  • 1
    • 0028862737 scopus 로고
    • A conceptual overview and critique of functional neuroimaging techniques in humans: 1. MRI/fMRI and PET
    • (1995) Crit. Rev. Neurobiol. , vol.9 , Issue.2-3 , pp. 229-309
    • Aine, C.J.1
  • 9
    • 77956889087 scopus 로고
    • Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.J.1
  • 13
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markovs chains and their applications
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 21
    • 0005024132 scopus 로고    scopus 로고
    • 100 Trade Center Drive61 820-7237Wolfram Research, Inc., , Champaign, IL, USA


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.