-
2
-
-
0001609938
-
Efficient approaches to gaussian process classification
-
S. A. Solla, T. K. Leen, and K.-R. Müller, editors, MIT Press
-
L. Csató, E. Fokoué, M. Opper, B. Schottky, and O. Winther. Efficient approaches to gaussian process classification. In S. A. Solla, T. K. Leen, and K.-R. Müller, editors, Advances in neural information processing systems 12. MIT Press, 2000.
-
(2000)
Advances in Neural Information Processing Systems
, vol.12
-
-
Csató, L.1
Fokoué, E.2
Opper, M.3
Schottky, B.4
Winther, O.5
-
3
-
-
0002364061
-
Boosting neural networks
-
A. J. C. Sharkey, editor, Springer
-
H. Drucker. Boosting neural networks. In A. J. C. Sharkey, editor, Combining artificial neural nets. Springer, 1999.
-
(1999)
Combining Artificial Neural Nets
-
-
Drucker, H.1
-
5
-
-
58149321460
-
Boosting a weak learning algorithm by majority
-
Y. Freund. Boosting a weak learning algorithm by majority. Information and Computation, 121(2):256-285, 1995.
-
(1995)
Information and Computation
, vol.121
, Issue.2
, pp. 256-285
-
-
Freund, Y.1
-
6
-
-
0031211090
-
A decision theoretic generalization of online learning and an application to boosting
-
Y. Freund and R. E. Schapire. A decision theoretic generalization of online learning and an application to boosting. Journal of Computer and System Sciences, 55, 1997.
-
(1997)
Journal of Computer and System Sciences
, vol.55
-
-
Freund, Y.1
Schapire, R.E.2
-
7
-
-
0034164230
-
Additive logistic regression: A statistical view of boosting
-
To appear
-
J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view of boosting. Annals of Statistics, 2000. To appear.
-
(2000)
Annals of Statistics
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
9
-
-
0001940458
-
Adaptive mixtures of local experts
-
R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and J. E. Hinton. Adaptive mixtures of local experts. Neural Computation, 3, 1991.
-
(1991)
Neural Computation
, vol.3
-
-
Jacobs, R.A.1
Jordan, M.I.2
Nowlan, S.J.3
Hinton, J.E.4
-
10
-
-
0000372206
-
Bayesian model comparison and backprop nets
-
J. E. Moody, S. J. Hanson, and R. P. Lippmann, editors, Morgan Kaufmann
-
D. J. C. MacKay. Bayesian model comparison and backprop nets. In J. E. Moody, S. J. Hanson, and R. P. Lippmann, editors, Advances in neural information processing systems 4, pages 839-846. Morgan Kaufmann, 1992.
-
(1992)
Advances in Neural Information Processing Systems
, vol.4
, pp. 839-846
-
-
MacKay, D.J.C.1
-
11
-
-
0003319647
-
Introduction to gaussian processes
-
C. M. Bishop, editor, NATO Asi Series F, Computer and Systems Sciences, Morgan Kaufmann
-
D. J. C. MacKay. Introduction to gaussian processes. In C. M. Bishop, editor, Neural Networks and Machine Learning, volume 168. NATO Asi Series F, Computer and Systems Sciences, Morgan Kaufmann, 1998.
-
(1998)
Neural Networks and Machine Learning
, vol.168
-
-
MacKay, D.J.C.1
-
13
-
-
0000902690
-
The effective number of parameters: An analysis of generalization and regularization in nonlinear learning systems
-
J. E. Moody, S. J. Hanson, and R. P. Lippmann, editors, Morgan Kaufmann
-
J. E. Moody. The effective number of parameters: an analysis of generalization and regularization in nonlinear learning systems. In J. E. Moody, S. J. Hanson, and R. P. Lippmann, editors, Advances in neural information processing systems 4, pages 847-854. Morgan Kaufmann, 1992.
-
(1992)
Advances in Neural Information Processing Systems
, vol.4
, pp. 847-854
-
-
Moody, J.E.1
-
16
-
-
0003243224
-
Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
-
A. J. Stools, editor, MIT press
-
J. C. Platt. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In A. J. Stools, editor, Advances in large Margin Classifiers. MIT press, 2000.
-
(2000)
Advances in Large Margin Classifiers
-
-
Platt, J.C.1
-
17
-
-
0025490985
-
Networks for approximation and learning
-
T. Poggio and F. Girosi. Networks for approximation and learning. Proceedings of the IEEE, 78:1481-1497, 1990.
-
(1990)
Proceedings of the IEEE
, vol.78
, pp. 1481-1497
-
-
Poggio, T.1
Girosi, F.2
-
19
-
-
0025448521
-
The strength of weak learnability
-
R. E. Schapire. The strength of weak learnability. Machine learning, 5(2):197-227, 1990.
-
(1990)
Machine Learning
, vol.5
, Issue.2
, pp. 197-227
-
-
Schapire, R.E.1
-
20
-
-
0034320395
-
A bayesian committee machine
-
In print
-
V. Tresp. A bayesian committee machine. Neural Computation, 2000. In print.
-
(2000)
Neural Computation
-
-
Tresp, V.1
-
22
-
-
85153970023
-
Combining estimators using non-constant weighting functions
-
G. Tesauro, D. S. Touretzky, and T. K. Leen, editors, MIT Press
-
V. Tresp and M. Taniguchi. Combining estimators using non-constant weighting functions. In G. Tesauro, D. S. Touretzky, and T. K. Leen, editors, Advances in neural information processing systems 7, pages 419-426. MIT Press, 1995.
-
(1995)
Advances in Neural Information Processing Systems
, vol.7
, pp. 419-426
-
-
Tresp, V.1
Taniguchi, M.2
-
25
-
-
0003241883
-
Bayesian "confidence intervals" for the cross-validated smoothing spline
-
G. Wahba. Bayesian "confidence intervals" for the cross-validated smoothing spline. J. Roy. Stat. Soc. Ser. B, 10:133-150, 1990.
-
(1990)
J. Roy. Stat. Soc. Ser. B
, vol.10
, pp. 133-150
-
-
Wahba, G.1
-
26
-
-
0001873883
-
Support vector machines, reproducing kernel hilbert spaces and randomized GACV
-
B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, MIT Press
-
G. Wahba. Support vector machines, reproducing kernel hilbert spaces and randomized GACV. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods, pages 69-88. MIT Press, 1999.
-
(1999)
Advances in Kernel Methods
, pp. 69-88
-
-
Wahba, G.1
-
27
-
-
0000704059
-
Computing with infinite neural networks
-
C. K. I. Williams. Computing with infinite neural networks. Neural Computation, 10:1203-1216, 1998.
-
(1998)
Neural Computation
, vol.10
, pp. 1203-1216
-
-
Williams, C.K.I.1
-
29
-
-
85072768928
-
Gaussian processes for regression
-
M. C. Mozer and M. E. Hasselmo, editors, MIT Press
-
C. K. I. Williams and C. E. Rasmussen. Gaussian processes for regression. In M. C. Mozer and M. E. Hasselmo, editors, Advances in neural information processing systems 8, pages 514-520. MIT Press, 1996.
-
(1996)
Advances in Neural Information Processing Systems
, vol.8
, pp. 514-520
-
-
Williams, C.K.I.1
Rasmussen, C.E.2
|