메뉴 건너뛰기




Volumn , Issue , 2000, Pages 130-139

The generalized Bayesian committee machine

Author keywords

Combining Estimators; Committee Machines; Data Mining; Gaussian Processes; Kernel Based Systems; Support Vector Machines

Indexed keywords

ARTIFICIAL INTELLIGENCE; LEARNING SYSTEMS; PROBABILITY; QUERY LANGUAGES; REGRESSION ANALYSIS;

EID: 0034593067     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/347090.347118     Document Type: Conference Paper
Times cited : (16)

References (29)
  • 3
    • 0002364061 scopus 로고    scopus 로고
    • Boosting neural networks
    • A. J. C. Sharkey, editor, Springer
    • H. Drucker. Boosting neural networks. In A. J. C. Sharkey, editor, Combining artificial neural nets. Springer, 1999.
    • (1999) Combining Artificial Neural Nets
    • Drucker, H.1
  • 5
    • 58149321460 scopus 로고
    • Boosting a weak learning algorithm by majority
    • Y. Freund. Boosting a weak learning algorithm by majority. Information and Computation, 121(2):256-285, 1995.
    • (1995) Information and Computation , vol.121 , Issue.2 , pp. 256-285
    • Freund, Y.1
  • 6
    • 0031211090 scopus 로고    scopus 로고
    • A decision theoretic generalization of online learning and an application to boosting
    • Y. Freund and R. E. Schapire. A decision theoretic generalization of online learning and an application to boosting. Journal of Computer and System Sciences, 55, 1997.
    • (1997) Journal of Computer and System Sciences , vol.55
    • Freund, Y.1    Schapire, R.E.2
  • 7
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • To appear
    • J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view of boosting. Annals of Statistics, 2000. To appear.
    • (2000) Annals of Statistics
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 10
    • 0000372206 scopus 로고
    • Bayesian model comparison and backprop nets
    • J. E. Moody, S. J. Hanson, and R. P. Lippmann, editors, Morgan Kaufmann
    • D. J. C. MacKay. Bayesian model comparison and backprop nets. In J. E. Moody, S. J. Hanson, and R. P. Lippmann, editors, Advances in neural information processing systems 4, pages 839-846. Morgan Kaufmann, 1992.
    • (1992) Advances in Neural Information Processing Systems , vol.4 , pp. 839-846
    • MacKay, D.J.C.1
  • 11
    • 0003319647 scopus 로고    scopus 로고
    • Introduction to gaussian processes
    • C. M. Bishop, editor, NATO Asi Series F, Computer and Systems Sciences, Morgan Kaufmann
    • D. J. C. MacKay. Introduction to gaussian processes. In C. M. Bishop, editor, Neural Networks and Machine Learning, volume 168. NATO Asi Series F, Computer and Systems Sciences, Morgan Kaufmann, 1998.
    • (1998) Neural Networks and Machine Learning , vol.168
    • MacKay, D.J.C.1
  • 13
    • 0000902690 scopus 로고
    • The effective number of parameters: An analysis of generalization and regularization in nonlinear learning systems
    • J. E. Moody, S. J. Hanson, and R. P. Lippmann, editors, Morgan Kaufmann
    • J. E. Moody. The effective number of parameters: an analysis of generalization and regularization in nonlinear learning systems. In J. E. Moody, S. J. Hanson, and R. P. Lippmann, editors, Advances in neural information processing systems 4, pages 847-854. Morgan Kaufmann, 1992.
    • (1992) Advances in Neural Information Processing Systems , vol.4 , pp. 847-854
    • Moody, J.E.1
  • 16
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
    • A. J. Stools, editor, MIT press
    • J. C. Platt. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In A. J. Stools, editor, Advances in large Margin Classifiers. MIT press, 2000.
    • (2000) Advances in Large Margin Classifiers
    • Platt, J.C.1
  • 17
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • T. Poggio and F. Girosi. Networks for approximation and learning. Proceedings of the IEEE, 78:1481-1497, 1990.
    • (1990) Proceedings of the IEEE , vol.78 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 19
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • R. E. Schapire. The strength of weak learnability. Machine learning, 5(2):197-227, 1990.
    • (1990) Machine Learning , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.E.1
  • 20
    • 0034320395 scopus 로고    scopus 로고
    • A bayesian committee machine
    • In print
    • V. Tresp. A bayesian committee machine. Neural Computation, 2000. In print.
    • (2000) Neural Computation
    • Tresp, V.1
  • 22
    • 85153970023 scopus 로고
    • Combining estimators using non-constant weighting functions
    • G. Tesauro, D. S. Touretzky, and T. K. Leen, editors, MIT Press
    • V. Tresp and M. Taniguchi. Combining estimators using non-constant weighting functions. In G. Tesauro, D. S. Touretzky, and T. K. Leen, editors, Advances in neural information processing systems 7, pages 419-426. MIT Press, 1995.
    • (1995) Advances in Neural Information Processing Systems , vol.7 , pp. 419-426
    • Tresp, V.1    Taniguchi, M.2
  • 25
    • 0003241883 scopus 로고
    • Bayesian "confidence intervals" for the cross-validated smoothing spline
    • G. Wahba. Bayesian "confidence intervals" for the cross-validated smoothing spline. J. Roy. Stat. Soc. Ser. B, 10:133-150, 1990.
    • (1990) J. Roy. Stat. Soc. Ser. B , vol.10 , pp. 133-150
    • Wahba, G.1
  • 26
    • 0001873883 scopus 로고    scopus 로고
    • Support vector machines, reproducing kernel hilbert spaces and randomized GACV
    • B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, MIT Press
    • G. Wahba. Support vector machines, reproducing kernel hilbert spaces and randomized GACV. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods, pages 69-88. MIT Press, 1999.
    • (1999) Advances in Kernel Methods , pp. 69-88
    • Wahba, G.1
  • 27
    • 0000704059 scopus 로고    scopus 로고
    • Computing with infinite neural networks
    • C. K. I. Williams. Computing with infinite neural networks. Neural Computation, 10:1203-1216, 1998.
    • (1998) Neural Computation , vol.10 , pp. 1203-1216
    • Williams, C.K.I.1
  • 29
    • 85072768928 scopus 로고    scopus 로고
    • Gaussian processes for regression
    • M. C. Mozer and M. E. Hasselmo, editors, MIT Press
    • C. K. I. Williams and C. E. Rasmussen. Gaussian processes for regression. In M. C. Mozer and M. E. Hasselmo, editors, Advances in neural information processing systems 8, pages 514-520. MIT Press, 1996.
    • (1996) Advances in Neural Information Processing Systems , vol.8 , pp. 514-520
    • Williams, C.K.I.1    Rasmussen, C.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.