메뉴 건너뛰기




Volumn 85, Issue 1, 2000, Pages 129-153

Gregory type quadrature based on quadratic nodal spline interpolation

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0034422893     PISSN: 0029599X     EISSN: None     Source Type: Journal    
DOI: 10.1007/s002110050480     Document Type: Article
Times cited : (10)

References (11)
  • 1
    • 0003855437 scopus 로고
    • Vandenhoek & Ruprecht, Göttingen
    • Brass, H. (1977): Quadraturverfahren. Vandenhoek & Ruprecht, Göttingen
    • (1977) Quadraturverfahren
    • Brass, H.1
  • 3
    • 0039803008 scopus 로고    scopus 로고
    • Peano kernel error analysis for quadratic nodal spline interpolation
    • De Swardt, S.A., de Villiers, J.M. (1999): Peano kernel error analysis for quadratic nodal spline interpolation. J. Approx. Theory 99, 344-368
    • (1999) J. Approx. Theory , vol.99 , pp. 344-368
    • De Swardt, S.A.1    De Villiers, J.M.2
  • 5
    • 0039488793 scopus 로고
    • A nodal spline generalization of the Lagrange interpolant
    • Nevai, P., Pinkus, A., (eds.). Academic Press, San Diego
    • De Villiers, J.M., Rohwer, C.H. (1991): A nodal spline generalization of the Lagrange interpolant. In: Nevai, P., Pinkus, A., (eds.), Progress in Approximation Theory. Academic Press, San Diego, 201-211
    • (1991) Progress in Approximation Theory , pp. 201-211
    • De Villiers, J.M.1    Rohwer, C.H.2
  • 6
    • 38248998753 scopus 로고
    • A convergence result in nodal spline interpolation
    • De Villiers, J.M. (1993): A convergence result in nodal spline interpolation. J. Approx. Theory 74, 266-279
    • (1993) J. Approx. Theory , vol.74 , pp. 266-279
    • De Villiers, J.M.1
  • 7
    • 21344487386 scopus 로고
    • A nodal spline interpolant for the Gregory rule of even order
    • De Villiers, J.M. (1993): A nodal spline interpolant for the Gregory rule of even order. Numer. Math. 66, 123-137
    • (1993) Numer. Math. , vol.66 , pp. 123-137
    • De Villiers, J.M.1
  • 9
    • 84981868882 scopus 로고
    • Optimale Fehlerschranken für die Quadraturformel von Gregory
    • Martensen, E. ( 1964): Optimale Fehlerschranken für die Quadraturformel von Gregory. Z. Angew. Math. Mech. 44, 159-168
    • (1964) Z. Angew. Math. Mech. , vol.44 , pp. 159-168
    • Martensen, E.1
  • 10
    • 0040395509 scopus 로고
    • Darstellung und Entwicklung des Restgliedes der Gregoryschen Quadraturformel mit Hilfe von Spline-Funktionen
    • Martensen, E. (1973): Darstellung und Entwicklung des Restgliedes der Gregoryschen Quadraturformel mit Hilfe von Spline-Funktionen. Numer. Math. 21, 70-80
    • (1973) Numer. Math. , vol.21 , pp. 70-80
    • Martensen, E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.