-
1
-
-
0346876665
-
Fiber polytopes for projections between cyclic polytopes
-
C.A. Athanasiadis, J. DeLoera, V. Reiner, and F. Santos, Fiber polytopes for projections between cyclic polytopes, European J. Combin. 21 (2000), 19-47.
-
(2000)
European J. Combin.
, vol.21
, pp. 19-47
-
-
Athanasiadis, C.A.1
DeLoera, J.2
Reiner, V.3
Santos, F.4
-
3
-
-
0347224130
-
Deformed products and maximal shadows of polytopes
-
American Mathematical Society, Providence, R.I., B. Chazelle, J.E. Goodman, and R. Pollack, eds.
-
N. Amenta and G.M. Ziegler, Deformed products and maximal shadows of polytopes, in Advances in Discrete and Computational Geometry, Contemporary Mathematics, vol. 223, American Mathematical Society, Providence, R.I., 1999 (B. Chazelle, J.E. Goodman, and R. Pollack, eds.), pp. 57-90.
-
(1999)
Advances in Discrete and Computational Geometry, Contemporary Mathematics
, vol.223
, pp. 57-90
-
-
Amenta, N.1
Ziegler, G.M.2
-
4
-
-
84972537285
-
On the graph structure of convex polyhedra in n-space
-
M.L. Balinski, On the graph structure of convex polyhedra in n-space, Pacific J. Math. 11 (1961), 431-434.
-
(1961)
Pacific J. Math.
, vol.11
, pp. 431-434
-
-
Balinski, M.L.1
-
5
-
-
0037686996
-
On Steinitz's theorem concerning convex 3-polytopes and on some properties of 3-connected graphs
-
The Many Facets of Graph Theory, Springer-Verlag, Berlin
-
D. Barnette and B. Grünbaum, On Steinitz's theorem concerning convex 3-polytopes and on some properties of 3-connected graphs, The Many Facets of Graph Theory, Lecture Notes in Mathematics, vol. 110, Springer-Verlag, Berlin, 1969, pp. 27-40.
-
(1969)
Lecture Notes in Mathematics
, vol.110
, pp. 27-40
-
-
Barnette, D.1
Grünbaum, B.2
-
6
-
-
0001342983
-
On puzzles and polytope isomorphisms
-
R. Blind and P. Mani-Levitska, On puzzles and polytope isomorphisms, Aequationes Math. 34 (1987), 287-297.
-
(1987)
Aequationes Math.
, vol.34
, pp. 287-297
-
-
Blind, R.1
Mani-Levitska, P.2
-
7
-
-
84972555027
-
Shellings of spheres and polytopes
-
G. Danaraj and V. Klee, Shellings of spheres and polytopes, Duke Math. J. 41 (1974), 443-451.
-
(1974)
Duke Math. J.
, vol.41
, pp. 443-451
-
-
Danaraj, G.1
Klee, V.2
-
8
-
-
0034416713
-
Ordering points by linear functionals
-
P.H. Edelman, Ordering points by linear functionals, European J. Combin. 21 (2000), 145-152.
-
(2000)
European J. Combin.
, vol.21
, pp. 145-152
-
-
Edelman, P.H.1
-
10
-
-
0039637282
-
Mathematical programming and convex geometry
-
North-Holland, Amsterdam, P.M. Gruber and J.M. Wills, eds.
-
P. Gritzmann and V. Klee, Mathematical programming and convex geometry, in Handbook of Convex Geometry, North-Holland, Amsterdam, 1993 (P.M. Gruber and J.M. Wills, eds.), pp. 627-674.
-
(1993)
Handbook of Convex Geometry
, pp. 627-674
-
-
Gritzmann, P.1
Klee, V.2
-
12
-
-
33646886707
-
Polytopes, graphs, and complexes
-
B. Grünbaum, Polytopes, graphs, and complexes, Bull. Amer. Math. Soc. 76 (1970), 1131-1202.
-
(1970)
Bull. Amer. Math. Soc.
, vol.76
, pp. 1131-1202
-
-
Grünbaum, B.1
-
13
-
-
0002363694
-
Polytopal graphs
-
Studies in Graph Theory, Part II, Mathematic Association of America, Washington, D.C., (D.R. Fulkerson, ed.)
-
B. Grünbaum, Polytopal graphs, in Studies in Graph Theory, Part II, MAA Studies in Mathematics, vol. 12, Mathematic Association of America, Washington, D.C., 1975 (D.R. Fulkerson, ed.), pp. 201-224.
-
(1975)
MAA Studies in Mathematics
, vol.12
, pp. 201-224
-
-
Grünbaum, B.1
-
14
-
-
0032437764
-
Randomized simplex algorithms on the Klee-Minty cubes
-
B. Gärtner and G. Ziegler, Randomized simplex algorithms on the Klee-Minty cubes, Combinatorica 18 (1998), 349-372.
-
(1998)
Combinatorica
, vol.18
, pp. 349-372
-
-
Gärtner, B.1
Ziegler, G.2
-
15
-
-
84980085899
-
Extreme varieties, concave functions and the fixed charge problem
-
W.M. Hirsch and A.J. Hoffman, Extreme varieties, concave functions and the fixed charge problem, Comm. Pure Appl. Math. 14 (1961), 355-369.
-
(1961)
Comm. Pure Appl. Math.
, vol.14
, pp. 355-369
-
-
Hirsch, W.M.1
Hoffman, A.J.2
-
16
-
-
0040637442
-
A proof of the strict monotone 4-step conjecture
-
Advances in Discrete and Computational Geometry, American Mathematical Society, Providence, R.I., (B. Chazelle, J.E. Goodman, and R. Pollack, eds.)
-
F. Holt and V. Klee, A proof of the strict monotone 4-step conjecture, in Advances in Discrete and Computational Geometry, Contemporary Mathematics, vol. 223, American Mathematical Society, Providence, R.I., 1999 (B. Chazelle, J.E. Goodman, and R. Pollack, eds.), pp. 201-216.
-
(1999)
Contemporary Mathematics
, vol.223
, pp. 201-216
-
-
Holt, F.1
Klee, V.2
-
17
-
-
38249027129
-
A simple way to tell a simple polytope from its graph
-
G. Kalai, A simple way to tell a simple polytope from its graph, J. Combin. Theory Ser. A 49 (1988), 381-383.
-
(1988)
J. Combin. Theory Ser. A
, vol.49
, pp. 381-383
-
-
Kalai, G.1
-
19
-
-
21144470115
-
Upper bounds for the diameter and height of graphs of convex polyhedra
-
G. Kalai, Upper bounds for the diameter and height of graphs of convex polyhedra, Discrete Comput. Geom. 8 (1992), 363-372.
-
(1992)
Discrete Comput. Geom.
, vol.8
, pp. 363-372
-
-
Kalai, G.1
-
20
-
-
0039452031
-
Heights of convex polytopes
-
V. Klee, Heights of convex polytopes, J. Math. Anal. Appl. 11 (1965), 176-190.
-
(1965)
J. Math. Anal. Appl.
, vol.11
, pp. 176-190
-
-
Klee, V.1
-
21
-
-
0001849163
-
How good is the simplex algorithm?
-
Academic Press, New York, (O. Shisha, ed.)
-
V. Klee and G. Minty, How good is the simplex algorithm?, in Inequalities III, Academic Press, New York, 1972 (O. Shisha, ed.), pp. 159-175.
-
(1972)
Inequalities
, vol.3
, pp. 159-175
-
-
Klee, V.1
Minty, G.2
-
22
-
-
0001572510
-
On the computational complexity of the first-order theory of the reals. I, II, III
-
J. Renegar, On the computational complexity of the first-order theory of the reals. I, II, III, J. Symbolic Comput. 13 (1992), 255-352.
-
(1992)
J. Symbolic Comput.
, vol.13
, pp. 255-352
-
-
Renegar, J.1
-
26
-
-
0039386446
-
The monotonic bounded Hirsch conjecture is false for dimension at least 4
-
M.J. Todd, The monotonic bounded Hirsch conjecture is false for dimension at least 4, Math. Oper. Res. 5 (1980), 599-601.
-
(1980)
Math. Oper. Res.
, vol.5
, pp. 599-601
-
-
Todd, M.J.1
|