-
1
-
-
0016918609
-
Long monotone paths in abstract polytopes
-
I. Adler and R. Saigal. Long monotone paths in abstract polytopes. Math. Operations Research, 1(1):89-95, 1976.
-
(1976)
Math. Operations Research
, vol.1
, Issue.1
, pp. 89-95
-
-
Adler, I.1
Saigal, R.2
-
2
-
-
0347224130
-
Deformed products and maximal shadows
-
J. Chazelle,J.B.Goodman, and R. Pollack,editors
-
N. Amenta and G. M. Ziegler. Deformed products and maximal shadows. In J. Chazelle, J.B. Goodman, and R. Pollack, editors, Advances in Discrete and Computational geometry, Contemporary Mathematics. Amer. Math. Soc., 1998.
-
(1998)
Advancesindiscreteandcomputational Geometry, Contemporary Mathematics. Amer. Math. Soc
-
-
Amenta, N.1
Ziegler, G.M.2
-
3
-
-
58149325510
-
A short proof of the d-connectedness of d-polytopes
-
D. Barnette. A short proof of the d-connectedness of d-polytopes. Discrete Math., 137:351-352, 1995
-
(1995)
Discrete Math
, vol.137
, pp. 351-352
-
-
Barnette, D.1
-
4
-
-
0000652462
-
Newnite pivoting rules for the simplex method
-
R. G. Bland. New nite pivoting rules for the simplex method. Math. Operations Research, 2:103-107, 1977.
-
(1977)
Math. Operationsresearch
, vol.2
, pp. 103-107
-
-
Bland, R.G.1
-
8
-
-
0029470290
-
A subexponential algorithm for abstract optimization problems
-
B. Gartner. A subexponential algorithm for abstract optimization problems. SIAM J. Comput., 24:1018-1035, 1995.
-
(1995)
SIAMJ. Comput
, vol.24
, pp. 1018-1035
-
-
Gartner, B.1
-
11
-
-
84948146295
-
Linearprogramming- randomizationandabstractframeworks
-
of Lecture Notes in Computer Science, Springer-Verlag
-
B. Gartner and E. Welzl. Linear programming - randomization and abstract frameworks. In Proc. 13th annu. Symp. on Theoretical Aspects of Computer Science (STACS), volume 1046 of Lecture Notes in Computer Science, pages 669-687. Springer-Verlag, 1996.
-
(1996)
Proc. 13Th Annu. Symp. on Theoretical Aspects of Computer Science (STACS)
, vol.1046
, pp. 669-687
-
-
Gartner, B.1
Welzl, E.2
-
13
-
-
0024014550
-
Completely unimodal numberings of a simple polytope. Discr
-
K. Williamson Hoke. Completely unimodal numberings of a simple polytope. Discr. Applied Math., 20:69-81, 1988.
-
(1988)
Applied Math
, vol.20
, pp. 69-81
-
-
Williamson Hoke, K.1
-
14
-
-
0040637442
-
Aproofofthestrictmonotone4-stepconjecture
-
J. Chazelle,J.B.Goodman, and R. Pollack,editors
-
F. Holt and V. Klee. A proof of the strict monotone 4-step conjecture. In J. Chazelle, J.B. Goodman, and R. Pollack, editors, Advances in Discrete and Computational geometry, Contemporary Mathematics. Amer. Math. Soc., 1998.
-
(1998)
Advancesindiscreteandcomputational Geometry, Contemporary Mathematics. Amer. Math. Soc
-
-
Holt, F.1
Klee, V.2
-
16
-
-
0000338418
-
Linear programming, the simplex algorithm and simple polytopes
-
G. Kalai. Linear programming, the simplex algorithm and simple polytopes. Math. Programming, 79:217-233, 1997.
-
(1997)
Math.Programming
, vol.79
, pp. 217-233
-
-
Kalai, G.1
-
18
-
-
0001849163
-
How good is the simplex algorithm?
-
O. Shisha, editor, Academic Press
-
V. Klee and G. J. Minty. How good is the simplex algorithm? In O. Shisha, editor, Inequalities III, pages 159-175. Academic Press, 1972.
-
(1972)
Inequalities III
, pp. 159-175
-
-
Klee, V.1
Minty, G.J.2
-
19
-
-
1542500714
-
A subexponential bound for linear programming
-
J. Matoušek, M. Sharir, and E. Welzl. A subexponential bound for linear programming. Algorithmica, 16:498-516, 1996.
-
(1996)
Algorithmica
, vol.16
, pp. 498-516
-
-
Matoušek, J.1
Sharir, M.2
Welzl, E.3
-
20
-
-
84990673768
-
Lower bounds for a subexponential optimization algorithm
-
J. Matoušek. Lower bounds for a subexponential optimization algorithm. Random Structures & Algorithms, 5(4):591-607, 1994.
-
(1994)
Randomstructures & Algorithms
, vol.5
, Issue.4
, pp. 607
-
-
Matoušek, J.1
|