-
1
-
-
0000701433
-
Near subgroups of finite groups
-
Michael Aschbacher. Near subgroups of finite groups. J. Group Theory 1 (1998), 113-129.
-
(1998)
J. Group Theory
, vol.1
, pp. 113-129
-
-
Aschbacher, M.1
-
2
-
-
0011022365
-
-
Addison-Wesley
-
Nicolas Bourbaki. Algebra (Addison-Wesley, 1974).
-
(1974)
Algebra
-
-
Bourbaki, N.1
-
4
-
-
0032057865
-
The computational structure of monotone monadic SNP and constraint satisfaction: A study through Datalog and group theory
-
T. Feder and M. Vardi. The computational structure of monotone monadic SNP and constraint satisfaction: a study through Datalog and group theory. SIAM J. Comput. 28 (1999), 57-104.
-
(1999)
SIAM J. Comput.
, vol.28
, pp. 57-104
-
-
Feder, T.1
Vardi, M.2
-
6
-
-
85031577184
-
On central extensions of gyrocommutative gyrogroups
-
To appear
-
Krzysztof Rozga. On central extensions of gyrocommutative gyrogroups. Pacific J. Math. To appear.
-
Pacific J. Math.
-
-
Rozga, K.1
-
7
-
-
0345985444
-
Abstract space-times and their Lorentz groups
-
Jonathan D. H. Smith and Abraham A. Ungar. Abstract space-times and their Lorentz groups. J. Math. Phys. 37 (1996), 3073-3098.
-
(1996)
J. Math. Phys.
, vol.37
, pp. 3073-3098
-
-
Smith, J.D.H.1
Ungar, A.A.2
-
8
-
-
0002461583
-
Thomas rotation and the parametrization of the Lorentz transformation group
-
Abraham A. Ungar. Thomas rotation and the parametrization of the Lorentz transformation group. Found. Phys. Lett. 1 (1988), 57-89.
-
(1988)
Found. Phys. Lett.
, vol.1
, pp. 57-89
-
-
Ungar, A.A.1
-
9
-
-
0001321336
-
Thomas precession and its associated grouplike structure
-
Abraham A. Ungar. Thomas precession and its associated grouplike structure. Amer. J. Phys. 59 (1991), 824-834.
-
(1991)
Amer. J. Phys.
, vol.59
, pp. 824-834
-
-
Ungar, A.A.1
-
10
-
-
0001448593
-
The holomorphic automorphism group of the complex disk
-
Abraham A. Ungar. The holomorphic automorphism group of the complex disk. Aequat. Math. 47 (1994), 240-254.
-
(1994)
Aequat. Math.
, vol.47
, pp. 240-254
-
-
Ungar, A.A.1
-
11
-
-
0031515045
-
Thomas precession: Its underlying gyrogroup axioms and their use in hyperbolic geometry and relativistic physics
-
Abraham A. Ungar. Thomas precession: its underlying gyrogroup axioms and their use in hyperbolic geometry and relativistic physics. Found. Phys. 27 (1997), 881-951.
-
(1997)
Found. Phys.
, vol.27
, pp. 881-951
-
-
Ungar, A.A.1
-
12
-
-
0345735864
-
The hyperbolic Pythagorean theorem in the Poincaré disc model of hyperbolic geometry
-
to appear
-
Abraham A. Ungar. The hyperbolic Pythagorean theorem in the Poincaré disc model of hyperbolic geometry. Amer. Math. Monthly, to appear.
-
Amer. Math. Monthly
-
-
Ungar, A.A.1
-
13
-
-
0032344813
-
From Pythagoras to Einstein: The hyperbolic Pythagorean theorem
-
Abraham A. Ungar. From Pythagoras to Einstein: the hyperbolic Pythagorean theorem. Found. Phys. 28 (1998), 1283-1321.
-
(1998)
Found. Phys.
, vol.28
, pp. 1283-1321
-
-
Ungar, A.A.1
|