-
1
-
-
0002461583
-
Thomas rotation and the parametrization of the Lorentz transformation group
-
Abraham A. Ungar, "Thomas rotation and the parametrization of the Lorentz transformation group," Found. Phys. Lett. 1, 57-89 (1988).
-
(1988)
Found. Phys. Lett.
, vol.1
, pp. 57-89
-
-
Ungar, A.A.1
-
2
-
-
0007291685
-
The Thomas rotation formalism underlying a nonassociative group structure for relativistic velocities
-
Abraham A. Ungar, "The Thomas rotation formalism underlying a nonassociative group structure for relativistic velocities," Appl. Math. Lett. 1, 403-405 (1988).
-
(1988)
Appl. Math. Lett.
, vol.1
, pp. 403-405
-
-
Ungar, A.A.1
-
4
-
-
0004113560
-
-
Box 2.4, W. H. Freeman, San Francisco
-
Charles W. Misner, Kip S. Thorne, and John Archibald Wheeler, Gravitation, Box 2.4, pp. 67-68 (W. H. Freeman, San Francisco, 1973). See also Jean-Marc Levy-Leblond, "Additivity, rapidity, relativity," Am. J. Phys. 47, 1045-1049 (1979); Isaac Moiseevich Yaglom, A Simple Non-Euclidean Geometry and Its Physical Basis: an Elementary Account of Galilean Geometry and the Galilean Principle of relativity, translated from the Russian by Abe Shenitzer with the editorial assistance of Basil Gordon (Springer, New York, 1979; and Arlan Ramsay and Robert D. Richtmyer, Introduction to Hyperbolic Geometry (Springer, New York, 1995).
-
(1973)
Gravitation
, pp. 67-68
-
-
Misner, C.W.1
Thorne, K.S.2
Wheeler, J.A.3
-
5
-
-
0042646707
-
Additivity, rapidity, relativity
-
Charles W. Misner, Kip S. Thorne, and John Archibald Wheeler, Gravitation, Box 2.4, pp. 67-68 (W. H. Freeman, San Francisco, 1973). See also Jean-Marc Levy-Leblond, "Additivity, rapidity, relativity," Am. J. Phys. 47, 1045-1049 (1979); Isaac Moiseevich Yaglom, A Simple Non-Euclidean Geometry and Its Physical Basis: an Elementary Account of Galilean Geometry and the Galilean Principle of relativity, translated from the Russian by Abe Shenitzer with the editorial assistance of Basil Gordon (Springer, New York, 1979; and Arlan Ramsay and Robert D. Richtmyer, Introduction to Hyperbolic Geometry (Springer, New York, 1995).
-
(1979)
Am. J. Phys.
, vol.47
, pp. 1045-1049
-
-
Levy-Leblond, J.-M.1
-
6
-
-
0003528497
-
-
translated from the Russian by Abe Shenitzer with the editorial assistance of Basil Gordon Springer, New York
-
Charles W. Misner, Kip S. Thorne, and John Archibald Wheeler, Gravitation, Box 2.4, pp. 67-68 (W. H. Freeman, San Francisco, 1973). See also Jean-Marc Levy-Leblond, "Additivity, rapidity, relativity," Am. J. Phys. 47, 1045-1049 (1979); Isaac Moiseevich Yaglom, A Simple Non-Euclidean Geometry and Its Physical Basis: an Elementary Account of Galilean Geometry and the Galilean Principle of relativity, translated from the Russian by Abe Shenitzer with the editorial assistance of Basil Gordon (Springer, New York, 1979; and Arlan Ramsay and Robert D. Richtmyer, Introduction to Hyperbolic Geometry (Springer, New York, 1995).
-
(1979)
A Simple Non-Euclidean Geometry and its Physical Basis: An Elementary Account of Galilean Geometry and the Galilean Principle of Relativity
-
-
Yaglom, I.M.1
-
7
-
-
0004153486
-
-
Springer, New York
-
Charles W. Misner, Kip S. Thorne, and John Archibald Wheeler, Gravitation, Box 2.4, pp. 67-68 (W. H. Freeman, San Francisco, 1973). See also Jean-Marc Levy-Leblond, "Additivity, rapidity, relativity," Am. J. Phys. 47, 1045-1049 (1979); Isaac Moiseevich Yaglom, A Simple Non-Euclidean Geometry and Its Physical Basis: an Elementary Account of Galilean Geometry and the Galilean Principle of relativity, translated from the Russian by Abe Shenitzer with the editorial assistance of Basil Gordon (Springer, New York, 1979; and Arlan Ramsay and Robert D. Richtmyer, Introduction to Hyperbolic Geometry (Springer, New York, 1995).
-
(1995)
Introduction to Hyperbolic Geometry
-
-
Ramsay, A.1
Richtmyer, R.D.2
-
9
-
-
0007158671
-
Axiomatic approach to the nonassociative group of relativistic velocities
-
Abraham A. Ungar, "Axiomatic approach to the nonassociative group of relativistic velocities," Found. Phys. Lett. 2, 199-203 (1989).
-
(1989)
Found. Phys. Lett.
, vol.2
, pp. 199-203
-
-
Ungar, A.A.1
-
10
-
-
0000429601
-
The relativistic noncommutative nonassociative group of velocities and the Thomas rotation
-
Abraham A. Ungar, "The relativistic noncommutative nonassociative group of velocities and the Thomas rotation," Res. Math. 16, 168-179 (1989).
-
(1989)
Res. Math.
, vol.16
, pp. 168-179
-
-
Ungar, A.A.1
-
11
-
-
0001552768
-
The relativistic velocity composition paradox and the Thomas rotation
-
Abraham A. Ungar, "The relativistic velocity composition paradox and the Thomas rotation," Found. Phys. 19, 1385-1396 (1989).
-
(1989)
Found. Phys.
, vol.19
, pp. 1385-1396
-
-
Ungar, A.A.1
-
12
-
-
0002089006
-
Weakly associative groups
-
Abraham A. Ungar, "Weakly associative groups," Res. Math. 17, 149-168 (1990).
-
(1990)
Res. Math.
, vol.17
, pp. 149-168
-
-
Ungar, A.A.1
-
13
-
-
0002588888
-
The expanding Minkowski space
-
Abraham A. Ungar, "The expanding Minkowski space," Res. Math. 17, 342-354 (1990).
-
(1990)
Res. Math.
, vol.17
, pp. 342-354
-
-
Ungar, A.A.1
-
14
-
-
0007158111
-
Group-like structure underlying the unit ball in real inner product spaces
-
Abraham A. Ungar, "Group-like structure underlying the unit ball in real inner product spaces," Res Math. 18, 355-364 (1990).
-
(1990)
Res Math.
, vol.18
, pp. 355-364
-
-
Ungar, A.A.1
-
15
-
-
0001326550
-
Quasidirect product groups and the Lorentz transformation group
-
T. M. Rassias (ed.), World Scientific Publ., New Jersey
-
Abraham A. Ungar, "Quasidirect product groups and the Lorentz transformation group," in T. M. Rassias (ed.), Constantin Caratheodory: An International Tribute, Vol. II, (World Scientific Publ., New Jersey, 1991), pp. 1378-1392.
-
(1991)
Constantin Caratheodory: An International Tribute
, vol.2
, pp. 1378-1392
-
-
Ungar, A.A.1
-
16
-
-
0007228636
-
Successive Lorentz transformations of the electromagnetic field
-
Abraham A. Ungar, "Successive Lorentz transformations of the electromagnetic field," Found. Phys. 21, 569-589 (1991).
-
(1991)
Found. Phys.
, vol.21
, pp. 569-589
-
-
Ungar, A.A.1
-
17
-
-
0001321336
-
Thomas precession and its associated grouplike structure
-
Abraham A. Ungar, "Thomas precession and its associated grouplike structure," Amer. J. Phys. 59, 824 834 (1991).
-
(1991)
Amer. J. Phys.
, vol.59
, pp. 824
-
-
Ungar, A.A.1
-
18
-
-
0007226102
-
A note on the Lorentz transformations linking initial and final 4-vectors
-
Abraham A. Ungar, "A note on the Lorentz transformations linking initial and final 4-vectors," J. Math. Phys. 33, 84-85 (1992).
-
(1992)
J. Math. Phys.
, vol.33
, pp. 84-85
-
-
Ungar, A.A.1
-
19
-
-
21144472786
-
The abstract Lorentz transformation group
-
Abraham A. Ungar, "The abstract Lorentz transformation group," Amer. J. Phys. 60, 815-828 (1992).
-
(1992)
Amer. J. Phys.
, vol.60
, pp. 815-828
-
-
Ungar, A.A.1
-
20
-
-
0001448593
-
The holomorphic automorphism group of the complex disk
-
Abraham A. Ungar, "The holomorphic automorphism group of the complex disk," Aequat. Math. 47, 240-254 (1994).
-
(1994)
Aequat. Math.
, vol.47
, pp. 240-254
-
-
Ungar, A.A.1
-
21
-
-
21344496569
-
The abstract complex Lorentz transformation group with real metric I: Special relativity formalism to deal with the holomorphic automorphism group of the unit ball in any complex Hilbert space
-
and Erratum: "The abstract complex Lorentz transformation group with real metric I: Special relativity formalism to deal with the holomorphic automorphism group of the unit ball in any complex Hilbert space", J. Math. Phys. 35, 3770 (1994)
-
Abraham A. Ungar, "The abstract complex Lorentz transformation group with real metric I: Special relativity formalism to deal with the holomorphic automorphism group of the unit ball in any complex Hilbert space," J. Math. Phys. 35, 1408-1425 (1994); and Erratum: "The abstract complex Lorentz transformation group with real metric I: Special relativity formalism to deal with the holomorphic automorphism group of the unit ball in any complex Hilbert space", J. Math. Phys. 35, 3770 (1994).
-
(1994)
J. Math. Phys.
, vol.35
, pp. 1408-1425
-
-
Ungar, A.A.1
-
23
-
-
0002714627
-
Gyrosemidirect product structure of bounded symmetric domains
-
Yaakov Friedman and Abraham A. Ungar, "Gyrosemidirect product structure of bounded symmetric domains," Res. Math. 26, 28-38 (1994).
-
(1994)
Res. Math.
, vol.26
, pp. 28-38
-
-
Friedman, Y.1
Ungar, A.A.2
-
24
-
-
0000987719
-
Equivalence of two gyrogroup structures on unit balls
-
Yuching You and Abraham A. Ungar, "Equivalence of two gyrogroup structures on unit balls," Res. Math. 28, 359-371 (1995).
-
(1995)
Res. Math.
, vol.28
, pp. 359-371
-
-
You, Y.1
Ungar, A.A.2
-
25
-
-
0030587380
-
Extension of the unit disk gyrogroup into the unit ball of any real inner product space
-
Abraham A. Ungar, "Extension of the unit disk gyrogroup into the unit ball of any real inner product space," J. Math. Anal. Appl. 202, 1040-1057 (1996).
-
(1996)
J. Math. Anal. Appl.
, vol.202
, pp. 1040-1057
-
-
Ungar, A.A.1
-
28
-
-
0347234654
-
-
Kluwer Academic Publishers, Doydrecht, in preparation
-
Abraham A. Ungar and Michael K. Kinyon, Gyrogroups: The Symmetries of Thomas Precession (Kluwer Academic Publishers, Doydrecht, in preparation): and A. B. Romanowska and J. D. H. Smith Post-modern Algebra, Vol. 2 (Wiley, New York, in preparation).
-
Gyrogroups: The Symmetries of Thomas Precession
-
-
Ungar, A.A.1
Kinyon, M.K.2
-
29
-
-
0003424120
-
-
Wiley, New York, in preparation
-
Abraham A. Ungar and Michael K. Kinyon, Gyrogroups: The Symmetries of Thomas Precession (Kluwer Academic Publishers, Doydrecht, in preparation): and A. B. Romanowska and J. D. H. Smith Post-modern Algebra, Vol. 2 (Wiley, New York, in preparation).
-
Post-modern Algebra
, vol.2
-
-
Romanowska, A.B.1
Smith, J.D.H.2
-
30
-
-
0030493670
-
Relativistic precession
-
J. Dwayne Hamilton, "Relativistic precession," Am. J. Phys. 64, 1197-1201 (1996).
-
(1996)
Am. J. Phys.
, vol.64
, pp. 1197-1201
-
-
Hamilton, J.D.1
-
31
-
-
0030521428
-
Rest frames for a point particle in special relativity
-
E. G. Peter Rowe, "Rest frames for a point particle in special relativity," Am. J. Phys. 64, 1184-1196 (1996).
-
(1996)
Am. J. Phys.
, vol.64
, pp. 1184-1196
-
-
Rowe, E.G.P.1
-
32
-
-
0030525551
-
Thomas precession and the Lienard-Wiechert field
-
R. J. Philpott, "Thomas precession and the Lienard-Wiechert field," Am. J. Phys. 64, 552-556 (1996).
-
(1996)
Am. J. Phys.
, vol.64
, pp. 552-556
-
-
Philpott, R.J.1
-
33
-
-
0345852091
-
On K-loops
-
Heinrich Wefelscheid, "On K-loops," J. Geom. 44, 22-23 (1992); and H. Wefelscheid, "On K-loops," J. Geom. 53, 26 (1995).
-
(1992)
J. Geom.
, vol.44
, pp. 22-23
-
-
Wefelscheid, H.1
-
34
-
-
0346604961
-
On K-loops
-
Heinrich Wefelscheid, "On K-loops," J. Geom. 44, 22-23 (1992); and H. Wefelscheid, "On K-loops," J. Geom. 53, 26 (1995).
-
(1995)
J. Geom.
, vol.53
, pp. 26
-
-
Wefelscheid, H.1
-
35
-
-
0009288659
-
Zusammenhange zwischen Fastbereichen, scharf 2-fach transitiven Permutationsgruppen und 2-Strukturen mit Rechtecksaxiom
-
Helmut Karzel, "Zusammenhange zwischen Fastbereichen, scharf 2-fach transitiven Permutationsgruppen und 2-Strukturen mit Rechtecksaxiom," Abh. Math. Sem. Univ. Hamburg 32, 191-206 (1968).
-
(1968)
Abh. Math. Sem. Univ. Hamburg
, vol.32
, pp. 191-206
-
-
Karzel, H.1
-
38
-
-
0003256380
-
Quasigroups and Loops Theory and Applications
-
Heldermann Verlag, Berlin
-
O. Chein, Hala O. Pflugfelder, and Jonathan D. H. Smith (eds.), Quasigroups and Loops Theory and Applications, Sigma Series in Pure Mathematics, Vol. 8 (Heldermann Verlag, Berlin, 1990).
-
(1990)
Sigma Series in Pure Mathematics
, vol.8
-
-
Chein, O.1
Pflugfelder, H.O.2
Smith, J.D.H.3
-
39
-
-
0001793410
-
On K-loops of finite order, to the memory of Hans Zassenhaus
-
In group theory a loop is a groupoid (S, + ) with an identity element in which each of the two equations a + x = b and v + a = b for the unknowns v and y possesses a unique solution. Several of our identities can be found in the literature on loop theory; see, e.g., Alexander Kreuzer and Heinrich Wefelscheid, "On K-loops of finite order, To the memory of Hans Zassenhaus," Res. Math. 25, 79-102 (1994).
-
(1994)
Res. Math.
, vol.25
, pp. 79-102
-
-
Kreuzer, A.1
Wefelscheid, H.2
-
40
-
-
0030355324
-
Midpoints in gyrogroups
-
Abraham A. Ungar, "Midpoints in gyrogroups," Found Phys. 26, 1277-1328 (1996).
-
(1996)
Found Phys.
, vol.26
, pp. 1277-1328
-
-
Ungar, A.A.1
-
41
-
-
0040235524
-
Invariant relative velocity
-
It is difficult to find in the literature Einstein's relativistic velocity addition law for not necessarily parallel velocities in a vector form. It can, however, readily be derived from the vector Lorentz transformation (8.14) which, in turn, can be found in the literature; see, e.g., Ref. 64
-
See, for instance, A. Aurilia, "Invariant relative velocity," Am. J. Phys. 43, 261-264 (1975). It is difficult to find in the literature Einstein's relativistic velocity addition law for not necessarily parallel velocities in a vector form. It can, however, readily be derived from the vector Lorentz transformation (8.14) which, in turn, can be found in the literature; see, e.g., Ref. 64.
-
(1975)
Am. J. Phys.
, vol.43
, pp. 261-264
-
-
Aurilia, A.1
-
42
-
-
0004113560
-
-
W. H. Freeman, San Francisco, Section 21.4
-
During a seminar on spacetime geometry that the author delivered at The University of Sydney, School of Mathematics and Statistics, April 18, 1996, Dr. Hugh Luckock stated that the splitting of spacetime into time and space, offered in gyrogroup theory by means of Thomas precession, may provide an answer to the desire to split the general relativistic notion of spacetime into space and time, expressed in: Charles W. Misner, Kip S. Thorne, and John Archibald Wheeler, Gravitation (W. H. Freeman, San Francisco, 1973), Section 21.4, p. 505.
-
(1973)
Gravitation
, pp. 505
-
-
Misner, C.W.1
Thorne, K.S.2
Wheeler, J.A.3
-
45
-
-
21144465991
-
On the relativistic velocity composition paradox and the Thomas rotation
-
I. C. Mocanu, "On the relativistic velocity composition paradox and the Thomas rotation." Found. Phys. Lett. 5, 443-456 (1992).
-
(1992)
Found. Phys. Lett.
, vol.5
, pp. 443-456
-
-
Mocanu, I.C.1
-
46
-
-
0345985444
-
Abstract space-times and their Lorentz groups
-
Jonathan D. H. Smith and Abraham A. Ungar, "Abstract space-times and their Lorentz groups," J. Math. Phys. 37, 3073-3098 (1996).
-
(1996)
J. Math. Phys.
, vol.37
, pp. 3073-3098
-
-
Smith, J.D.H.1
Ungar, A.A.2
-
48
-
-
0002186161
-
Old and new in Möbius groups
-
See Eq. (3.3) in Lars V. Ahlfors, "Old and new in Möbius groups," Ann. Acad Sci. Fenn. Ser. A I Math. 9, 93-105 (1984); and p. 25 in Lars V. Ahlfors, Möbius Transformations in Several Dimensions, Lecture Notes (University of Minnesota, Minneapolis, 1981).
-
(1984)
Ann. Acad Sci. Fenn. Ser. A I Math.
, vol.9
, pp. 93-105
-
-
Ahlfors, L.V.1
-
49
-
-
0003593009
-
-
Lecture Notes University of Minnesota, Minneapolis
-
See Eq. (3.3) in Lars V. Ahlfors, "Old and new in Möbius groups," Ann. Acad Sci. Fenn. Ser. A I Math. 9, 93-105 (1984); and p. 25 in Lars V. Ahlfors, Möbius Transformations in Several Dimensions, Lecture Notes (University of Minnesota, Minneapolis, 1981).
-
(1981)
Möbius Transformations in Several Dimensions
, pp. 25
-
-
Ahlfors, L.V.1
-
52
-
-
0010793684
-
Formalism to deal with Reichenbach's special theory of relativity
-
Abraham A. Ungar, "Formalism to deal with Reichenbach's special theory of relativity," Found. Phys. 21, 691-726 (1991).
-
(1991)
Found. Phys.
, vol.21
, pp. 691-726
-
-
Ungar, A.A.1
-
53
-
-
0041176610
-
Does mass really depend on velocity, dad?
-
Carl G. Adler, "Does mass really depend on velocity, dad?" Am. J. Phys. 55, 739-743 (1987); but see T. R. Sandin, "In defense of relativistic mass," Am. J. Phys. 59, 1032-1036 (1991).
-
(1987)
Am. J. Phys.
, vol.55
, pp. 739-743
-
-
Adler, C.G.1
-
54
-
-
0041176610
-
In defense of relativistic mass
-
Carl G. Adler, "Does mass really depend on velocity, dad?" Am. J. Phys. 55, 739-743 (1987); but see T. R. Sandin, "In defense of relativistic mass," Am. J. Phys. 59, 1032-1036 (1991).
-
(1991)
Am. J. Phys.
, vol.59
, pp. 1032-1036
-
-
Sandin, T.R.1
-
55
-
-
0346604962
-
The advantage of teaching relativity with four-vectors
-
Robert W. Brehme, "The advantage of teaching relativity with four-vectors," Am. J. Phys. 36, 896-901 (1968).
-
(1968)
Am. J. Phys.
, vol.36
, pp. 896-901
-
-
Brehme, R.W.1
-
56
-
-
0000481658
-
Special Relativity without One-Way Velocity Assumptions: Parts I and II
-
J. A. Winnie, "Special Relativity without One-Way Velocity Assumptions: Parts I and II," Philos. Sci. 37, 81-99, 223-238 (1970).
-
(1970)
Philos. Sci.
, vol.37
, pp. 81-99
-
-
Winnie, J.A.1
-
57
-
-
0004188454
-
-
translated by G. Field Pergamon, New York
-
See Wolfgang Pauli, Theory of Relativity, translated by G. Field (Pergamon, New York, 1958) p. 74, A. Sommerfeld, "Ueber die Zusammensetzung der Geschwindigkeiten in der Relativitatstheorie," Phys. Z. 10, 826-829 (1909); Vladimir Varićak, "Anwendung der Lobatschefkijschen Geometrie in der Relativtheorie," Phys. Z. 11, 93-96 and 287-293 (1910); and Vladimir Varićak, "Ueber die nichteuklidische Interpretation der Relativitatstheorie," Jahresber. Dtsch. Math. Ver. 21, 103-127 (1912). An extension of the study of the hyperbolic structure of relativity velocity spaces from one to three dimensions is available in the literature; see D. K. Sen, "3-dimensional hyperbolic geometry and relativity," in A. Coley, C. Dyer, and T. Tupper (eds), Proceedings of the 2nd Canadian Conference on General Relativity and Relativistic Astrophysics, pp. 264-266 (World Scientific, 1988); and Lars-Erik Lundberg, "Quantum theory, hyperbolic geometry and relativity," Rev. Math. Phys. 6, 39-49 (1994).
-
(1958)
Theory of Relativity
, pp. 74
-
-
Pauli, W.1
-
58
-
-
0004586036
-
Ueber die Zusammensetzung der Geschwindigkeiten in der Relativitatstheorie
-
See Wolfgang Pauli, Theory of Relativity, translated by G. Field (Pergamon, New York, 1958) p. 74, A. Sommerfeld, "Ueber die Zusammensetzung der Geschwindigkeiten in der Relativitatstheorie," Phys. Z. 10, 826-829 (1909); Vladimir Varićak, "Anwendung der Lobatschefkijschen Geometrie in der Relativtheorie," Phys. Z. 11, 93-96 and 287-293 (1910); and Vladimir Varićak, "Ueber die nichteuklidische Interpretation der Relativitatstheorie," Jahresber. Dtsch. Math. Ver. 21, 103-127 (1912). An extension of the study of the hyperbolic structure of relativity velocity spaces from one to three dimensions is available in the literature; see D. K. Sen, "3-dimensional hyperbolic geometry and relativity," in A. Coley, C. Dyer, and T. Tupper (eds), Proceedings of the 2nd Canadian Conference on General Relativity and Relativistic Astrophysics, pp. 264-266 (World Scientific, 1988); and Lars-Erik Lundberg, "Quantum theory, hyperbolic geometry and relativity," Rev. Math. Phys. 6, 39-49 (1994).
-
(1909)
Phys. Z.
, vol.10
, pp. 826-829
-
-
Sommerfeld, A.1
-
59
-
-
0041524790
-
Anwendung der Lobatschefkijschen Geometrie in der Relativtheorie
-
See Wolfgang Pauli, Theory of Relativity, translated by G. Field (Pergamon, New York, 1958) p. 74, A. Sommerfeld, "Ueber die Zusammensetzung der Geschwindigkeiten in der Relativitatstheorie," Phys. Z. 10, 826-829 (1909); Vladimir Varićak, "Anwendung der Lobatschefkijschen Geometrie in der Relativtheorie," Phys. Z. 11, 93-96 and 287-293 (1910); and Vladimir Varićak, "Ueber die nichteuklidische Interpretation der Relativitatstheorie," Jahresber. Dtsch. Math. Ver. 21, 103-127 (1912). An extension of the study of the hyperbolic structure of relativity velocity spaces from one to three dimensions is available in the literature; see D. K. Sen, "3-dimensional hyperbolic geometry and relativity," in A. Coley, C. Dyer, and T. Tupper (eds), Proceedings of the 2nd Canadian Conference on General Relativity and Relativistic Astrophysics, pp. 264-266 (World Scientific, 1988); and Lars-Erik Lundberg, "Quantum theory, hyperbolic geometry and relativity," Rev. Math. Phys. 6, 39-49 (1994).
-
(1910)
Phys. Z.
, vol.11
, pp. 93-96
-
-
Varićak, V.1
-
60
-
-
0041524792
-
Ueber die nichteuklidische Interpretation der Relativitatstheorie
-
See Wolfgang Pauli, Theory of Relativity, translated by G. Field (Pergamon, New York, 1958) p. 74, A. Sommerfeld, "Ueber die Zusammensetzung der Geschwindigkeiten in der Relativitatstheorie," Phys. Z. 10, 826-829 (1909); Vladimir Varićak, "Anwendung der Lobatschefkijschen Geometrie in der Relativtheorie," Phys. Z. 11, 93-96 and 287-293 (1910); and Vladimir Varićak, "Ueber die nichteuklidische Interpretation der Relativitatstheorie," Jahresber. Dtsch. Math. Ver. 21, 103-127 (1912). An extension of the study of the hyperbolic structure of relativity velocity spaces from one to three dimensions is available in the literature; see D. K. Sen, "3-dimensional hyperbolic geometry and relativity," in A. Coley, C. Dyer, and T. Tupper (eds), Proceedings of the 2nd Canadian Conference on General Relativity and Relativistic Astrophysics, pp. 264-266 (World Scientific, 1988); and Lars-Erik Lundberg, "Quantum theory, hyperbolic geometry and relativity," Rev. Math. Phys. 6, 39-49 (1994).
-
(1912)
Jahresber. Dtsch. Math. Ver.
, vol.21
, pp. 103-127
-
-
Varićak, V.1
-
61
-
-
0041448872
-
3-dimensional hyperbolic geometry and relativity
-
A. Coley, C. Dyer, and T. Tupper (eds), World Scientific
-
See Wolfgang Pauli, Theory of Relativity, translated by G. Field (Pergamon, New York, 1958) p. 74, A. Sommerfeld, "Ueber die Zusammensetzung der Geschwindigkeiten in der Relativitatstheorie," Phys. Z. 10, 826-829 (1909); Vladimir Varićak, "Anwendung der Lobatschefkijschen Geometrie in der Relativtheorie," Phys. Z. 11, 93-96 and 287-293 (1910); and Vladimir Varićak, "Ueber die nichteuklidische Interpretation der Relativitatstheorie," Jahresber. Dtsch. Math. Ver. 21, 103-127 (1912). An extension of the study of the hyperbolic structure of relativity velocity spaces from one to three dimensions is available in the literature; see D. K. Sen, "3-dimensional hyperbolic geometry and relativity," in A. Coley, C. Dyer, and T. Tupper (eds), Proceedings of the 2nd Canadian Conference on General Relativity and Relativistic Astrophysics, pp. 264-266 (World Scientific, 1988); and Lars-Erik Lundberg, "Quantum theory, hyperbolic geometry and relativity," Rev. Math. Phys. 6, 39-49 (1994).
-
(1988)
Proceedings of the 2nd Canadian Conference on General Relativity and Relativistic Astrophysics
, pp. 264-266
-
-
Sen, D.K.1
-
62
-
-
0348180859
-
Quantum theory, hyperbolic geometry and relativity
-
See Wolfgang Pauli, Theory of Relativity, translated by G. Field (Pergamon, New York, 1958) p. 74, A. Sommerfeld, "Ueber die Zusammensetzung der Geschwindigkeiten in der Relativitatstheorie," Phys. Z. 10, 826-829 (1909); Vladimir Varićak, "Anwendung der Lobatschefkijschen Geometrie in der Relativtheorie," Phys. Z. 11, 93-96 and 287-293 (1910); and Vladimir Varićak, "Ueber die nichteuklidische Interpretation der Relativitatstheorie," Jahresber. Dtsch. Math. Ver. 21, 103-127 (1912). An extension of the study of the hyperbolic structure of relativity velocity spaces from one to three dimensions is available in the literature; see D. K. Sen, "3-dimensional hyperbolic geometry and relativity," in A. Coley, C. Dyer, and T. Tupper (eds), Proceedings of the 2nd Canadian Conference on General Relativity and Relativistic Astrophysics, pp. 264-266 (World Scientific, 1988); and Lars-Erik Lundberg, "Quantum theory, hyperbolic geometry and relativity," Rev. Math. Phys. 6, 39-49 (1994).
-
(1994)
Rev. Math. Phys.
, vol.6
, pp. 39-49
-
-
Lundberg, L.-E.1
-
64
-
-
0003449868
-
-
Springer-Verlag, New York
-
n (Springer-Verlag, New York, 1980).
-
(1980)
n
-
-
Rudin, W.1
-
65
-
-
84976651235
-
Zur Elektrodynamik Bewegter Körper
-
A. Einstein, Zur Elektrodynamik Bewegter Körper (On the Electrodynamics of Moving Bodies), Ann. Phys. (Leipzig) 17 891-921, (1905). For English translation see H. M. Schwanz, "Einstein's first paper on relativity" (covers the first of the two parts of Einstein's paper), Am. J. Phys. 45, 18-25, (1977);
-
(1905)
Ann. Phys. (Leipzig)
, vol.17
, pp. 891-921
-
-
Einstein, A.1
-
66
-
-
0346290222
-
Einstein's first paper on relativity
-
For English translation, covers the first of the two parts of Einstein's paper
-
A. Einstein, Zur Elektrodynamik Bewegter Körper (On the Electrodynamics of Moving Bodies), Ann. Phys. (Leipzig) 17 891-921, (1905). For English translation see H. M. Schwanz, "Einstein's first paper on relativity" (covers the first of the two parts of Einstein's paper), Am. J. Phys. 45, 18-25, (1977);
-
(1977)
Am. J. Phys.
, vol.45
, pp. 18-25
-
-
Schwanz, H.M.1
-
67
-
-
0346604985
-
-
Dover, New York, translated by W. Perrett and G. B. Jeffrey, first published in 1923
-
and H. A. Lorentz, A. Einstein, H. Minkowski, and H. Weyl, The Principle of Relativity (Dover, New York, translated by W. Perrett and G. B. Jeffrey, 1952, first published in 1923), pp. 37-65.
-
(1952)
The Principle of Relativity
, pp. 37-65
-
-
Lorentz, H.A.1
Einstein, A.2
Minkowski, H.3
Weyl, H.4
-
70
-
-
0002996104
-
Quasigroups and Differential Geometry
-
Chap. XII in O. Chein, Hala O. Pflugfelder, and J. D. H. Smith (eds.), Heldermann Verlag, Berlin
-
P. O. Miheev and L. V. Sabinin, Quasigroups and Differential Geometry, Chap. XII in O. Chein, Hala O. Pflugfelder, and J. D. H. Smith (eds.), Quasigroups and Loops: Theory and Applications (Sigma Series in Pure Mathematics, Vol. 8, Heldermann Verlag, Berlin, 1990) pp. 357-430; and H. Karzel and M. J. Thomsen, "Near-rings, generalizations, near-rings with regular elements and applications, a report," Contributions to General Algebra 8, Proc. Conf. on Near-Rings and Near-Fields, Linz, Austria, July 14-20, 1991.
-
(1990)
Quasigroups and Loops: Theory and Applications Sigma Series in Pure Mathematics
, vol.8
, pp. 357-430
-
-
Miheev, P.O.1
Sabinin, L.V.2
-
71
-
-
0347865074
-
Near-rings, generalizations, near-rings with regular elements and applications, a report
-
Linz, Austria, July 14-20
-
P. O. Miheev and L. V. Sabinin, Quasigroups and Differential Geometry, Chap. XII in O. Chein, Hala O. Pflugfelder, and J. D. H. Smith (eds.), Quasigroups and Loops: Theory and Applications (Sigma Series in Pure Mathematics, Vol. 8, Heldermann Verlag, Berlin, 1990) pp. 357-430; and H. Karzel and M. J. Thomsen, "Near-rings, generalizations, near-rings with regular elements and applications, a report," Contributions to General Algebra 8, Proc. Conf. on Near-Rings and Near-Fields, Linz, Austria, July 14-20, 1991.
-
(1991)
Contributions to General Algebra 8, Proc. Conf. on Near-Rings and Near-Fields
, vol.8
-
-
Karzel, H.1
Thomsen, M.J.2
-
72
-
-
0001450842
-
Physical holonomy, Thomas precession, and Clifford algebra
-
Sect. III
-
Helmuth K. Urbantke, "Physical holonomy, Thomas precession, and Clifford algebra," Sect. III, Amer. J. Phys. 58, 747-750 (1990).
-
(1990)
Amer. J. Phys.
, vol.58
, pp. 747-750
-
-
Urbantke, H.K.1
-
73
-
-
0039090952
-
The nonreciprocity of relative acceleration in relativity
-
W. Rindler and L. Mishra, "The nonreciprocity of relative acceleration in relativity," Phys. Lett A 173, 105-108 (1993). See also Gonzalez-Dîaz, "Relativistic negative acceleration components," Am. J. Phys. 46, 932-934 (1977).
-
(1993)
Phys. Lett A
, vol.173
, pp. 105-108
-
-
Rindler, W.1
Mishra, L.2
-
74
-
-
25344441366
-
Relativistic negative acceleration components
-
W. Rindler and L. Mishra, "The nonreciprocity of relative acceleration in relativity," Phys. Lett A 173, 105-108 (1993). See also Gonzalez-Dîaz, "Relativistic negative acceleration components," Am. J. Phys. 46, 932-934 (1977).
-
(1977)
Am. J. Phys.
, vol.46
, pp. 932-934
-
-
Gonzalez-Dîaz1
-
77
-
-
0347234650
-
-
See Ref 59 p. 304
-
See Ref 59 p. 304.
-
-
-
-
78
-
-
0346604986
-
-
An observation made by Michael K. Kinyon
-
An observation made by Michael K. Kinyon.
-
-
-
-
79
-
-
0346604987
-
-
An observation made by Oliver Jones
-
An observation made by Oliver Jones.
-
-
-
-
81
-
-
0347865073
-
Lorentz transformations in terms of initial and final vectors
-
C. B. van Wyk, "Lorentz transformations in terms of initial and final vectors," J. Math. Phys. 27, 1311-1314 (1986).
-
(1986)
J. Math. Phys.
, vol.27
, pp. 1311-1314
-
-
Van Wyk, C.B.1
-
82
-
-
85139791612
-
-
(68)
-
(68); see D. Kalligas, P. S. Wesson, and C. F. W. Everitt, "The Classical tests in Kaluza-Klein gravity," preprint. A few references from the literature on six-dimensional relativity are: H. C. Chandola and B. S. Rajput, "Maxwell's equations in six-dimensional space-time," Indian J. Pure Appl Phys. 24, 58-64 (1986); E. A. B. Cole, "Centre-of-mass frame in six-dimensional special relativity," Lett. Nuovo Cimento, 28, 171-174 (1980); E. A. B. Cole, "New electromagnetic fields in six-dimensional special relativity," Nuovo Cimento, 60A, 1-11 (1980); E. A. B. Cole and S. A. Buchanan, "Space- time transformations in six-dimensional special relativity," J. Phys. A. Math. Gen. 15, L255-L257 (1982): I. Merches, and C. Dariescu, "The use of six-vectors in the theory of special relativity," Acta Phys. Hung. 70, 63-70 (1991); P. T. Papas, "The three-dimensional time equation," Lett. Nuovo Cimento 25, 429-434 J. Strnad, "Six-dimensional space- time and the Thomas precession," Lett. Nuovo Cimento 26, 535-536 (1979); and M. T. Teli, "General Lorentz transformations in six-dimensional space-time," Phys. Lett. A 128, 447-450 (1987).
-
The Possible Existence of Extra Dimensions to Spacetime can be Tested Astrophysically
-
-
-
83
-
-
0346604990
-
-
preprint
-
(68); see D. Kalligas, P. S. Wesson, and C. F. W. Everitt, "The Classical tests in Kaluza-Klein gravity," preprint. A few references from the literature on six-dimensional relativity are: H. C. Chandola and B. S. Rajput, "Maxwell's equations in six-dimensional space-time," Indian J. Pure Appl Phys. 24, 58-64 (1986); E. A. B. Cole, "Centre-of-mass frame in six-dimensional special relativity," Lett. Nuovo Cimento, 28, 171-174 (1980); E. A. B. Cole, "New electromagnetic fields in six-dimensional special relativity," Nuovo Cimento, 60A, 1-11 (1980); E. A. B. Cole and S. A. Buchanan, "Space- time transformations in six-dimensional special relativity," J. Phys. A. Math. Gen. 15, L255-L257 (1982): I. Merches, and C. Dariescu, "The use of six-vectors in the theory of special relativity," Acta Phys. Hung. 70, 63-70 (1991); P. T. Papas, "The three-dimensional time equation," Lett. Nuovo Cimento 25, 429-434 J. Strnad, "Six-dimensional space- time and the Thomas precession," Lett. Nuovo Cimento 26, 535-536 (1979); and M. T. Teli, "General Lorentz transformations in six-dimensional space-time," Phys. Lett. A 128, 447-450 (1987).
-
The Classical Tests in Kaluza-Klein Gravity
-
-
Kalligas, D.1
Wesson, P.S.2
Everitt, C.F.W.3
-
84
-
-
0342892436
-
Maxwell's equations in six-dimensional space-time
-
(68); see D. Kalligas, P. S. Wesson, and C. F. W. Everitt, "The Classical tests in Kaluza-Klein gravity," preprint. A few references from the literature on six-dimensional relativity are: H. C. Chandola and B. S. Rajput, "Maxwell's equations in six-dimensional space-time," Indian J. Pure Appl Phys. 24, 58-64 (1986); E. A. B. Cole, "Centre-of-mass frame in six-dimensional special relativity," Lett. Nuovo Cimento, 28, 171-174 (1980); E. A. B. Cole, "New electromagnetic fields in six-dimensional special relativity," Nuovo Cimento, 60A, 1-11 (1980); E. A. B. Cole and S. A. Buchanan, "Space- time transformations in six-dimensional special relativity," J. Phys. A. Math. Gen. 15, L255-L257 (1982): I. Merches, and C. Dariescu, "The use of six-vectors in the theory of special relativity," Acta Phys. Hung. 70, 63-70 (1991); P. T. Papas, "The three-dimensional time equation," Lett. Nuovo Cimento 25, 429-434 J. Strnad, "Six-dimensional space- time and the Thomas precession," Lett. Nuovo Cimento 26, 535-536 (1979); and M. T. Teli, "General Lorentz transformations in six-dimensional space-time," Phys. Lett. A 128, 447-450 (1987).
-
(1986)
Indian J. Pure Appl Phys.
, vol.24
, pp. 58-64
-
-
Chandola, H.C.1
Rajput, B.S.2
-
85
-
-
51249181665
-
Centre-of-mass frame in six-dimensional special relativity
-
(68); see D. Kalligas, P. S. Wesson, and C. F. W. Everitt, "The Classical tests in Kaluza-Klein gravity," preprint. A few references from the literature on six-dimensional relativity are: H. C. Chandola and B. S. Rajput, "Maxwell's equations in six-dimensional space-time," Indian J. Pure Appl Phys. 24, 58-64 (1986); E. A. B. Cole, "Centre-of-mass frame in six-dimensional special relativity," Lett. Nuovo Cimento, 28, 171-174 (1980); E. A. B. Cole, "New electromagnetic fields in six-dimensional special relativity," Nuovo Cimento, 60A, 1-11 (1980); E. A. B. Cole and S. A. Buchanan, "Space- time transformations in six-dimensional special relativity," J. Phys. A. Math. Gen. 15, L255-L257 (1982): I. Merches, and C. Dariescu, "The use of six-vectors in the theory of special relativity," Acta Phys. Hung. 70, 63-70 (1991); P. T. Papas, "The three-dimensional time equation," Lett. Nuovo Cimento 25, 429-434 J. Strnad, "Six-dimensional space- time and the Thomas precession," Lett. Nuovo Cimento 26, 535-536 (1979); and M. T. Teli, "General Lorentz transformations in six-dimensional space-time," Phys. Lett. A 128, 447-450 (1987).
-
(1980)
Lett. Nuovo Cimento
, vol.28
, pp. 171-174
-
-
Cole, E.A.B.1
-
86
-
-
51249181647
-
New electromagnetic fields in six-dimensional special relativity
-
(68); see D. Kalligas, P. S. Wesson, and C. F. W. Everitt, "The Classical tests in Kaluza-Klein gravity," preprint. A few references from the literature on six-dimensional relativity are: H. C. Chandola and B. S. Rajput, "Maxwell's equations in six-dimensional space-time," Indian J. Pure Appl Phys. 24, 58-64 (1986); E. A. B. Cole, "Centre-of-mass frame in six-dimensional special relativity," Lett. Nuovo Cimento, 28, 171-174 (1980); E. A. B. Cole, "New electromagnetic fields in six-dimensional special relativity," Nuovo Cimento, 60A, 1-11 (1980); E. A. B. Cole and S. A. Buchanan, "Space- time transformations in six-dimensional special relativity," J. Phys. A. Math. Gen. 15, L255-L257 (1982): I. Merches, and C. Dariescu, "The use of six-vectors in the theory of special relativity," Acta Phys. Hung. 70, 63-70 (1991); P. T. Papas, "The three-dimensional time equation," Lett. Nuovo Cimento 25, 429-434 J. Strnad, "Six-dimensional space- time and the Thomas precession," Lett. Nuovo Cimento 26, 535-536 (1979); and M. T. Teli, "General Lorentz transformations in six-dimensional space-time," Phys. Lett. A 128, 447-450 (1987).
-
(1980)
Nuovo Cimento
, vol.60 A
, pp. 1-11
-
-
Cole, E.A.B.1
-
87
-
-
0040986134
-
Space-time transformations in six-dimensional special relativity
-
(68); see D. Kalligas, P. S. Wesson, and C. F. W. Everitt, "The Classical tests in Kaluza-Klein gravity," preprint. A few references from the literature on six-dimensional relativity are: H. C. Chandola and B. S. Rajput, "Maxwell's equations in six-dimensional space-time," Indian J. Pure Appl Phys. 24, 58-64 (1986); E. A. B. Cole, "Centre-of-mass frame in six-dimensional special relativity," Lett. Nuovo Cimento, 28, 171-174 (1980); E. A. B. Cole, "New electromagnetic fields in six-dimensional special relativity," Nuovo Cimento, 60A, 1-11 (1980); E. A. B. Cole and S. A. Buchanan, "Space-time transformations in six-dimensional special relativity," J. Phys. A. Math. Gen. 15, L255-L257 (1982): I. Merches, and C. Dariescu, "The use of six-vectors in the theory of special relativity," Acta Phys. Hung. 70, 63-70 (1991); P. T. Papas, "The three-dimensional time equation," Lett. Nuovo Cimento 25, 429-434 J. Strnad, "Six-dimensional space- time and the Thomas precession," Lett. Nuovo Cimento 26, 535-536 (1979); and M. T. Teli, "General Lorentz transformations in six-dimensional space-time," Phys. Lett. A 128, 447-450 (1987).
-
(1982)
J. Phys. A. Math. Gen.
, vol.15
-
-
Cole, E.A.B.1
Buchanan, S.A.2
-
88
-
-
0347865075
-
The use of six-vectors in the theory of special relativity
-
(68); see D. Kalligas, P. S. Wesson, and C. F. W. Everitt, "The Classical tests in Kaluza-Klein gravity," preprint. A few references from the literature on six-dimensional relativity are: H. C. Chandola and B. S. Rajput, "Maxwell's equations in six-dimensional space-time," Indian J. Pure Appl Phys. 24, 58-64 (1986); E. A. B. Cole, "Centre-of-mass frame in six-dimensional special relativity," Lett. Nuovo Cimento, 28, 171-174 (1980); E. A. B. Cole, "New electromagnetic fields in six-dimensional special relativity," Nuovo Cimento, 60A, 1-11 (1980); E. A. B. Cole and S. A. Buchanan, "Space- time transformations in six-dimensional special relativity," J. Phys. A. Math. Gen. 15, L255-L257 (1982): I. Merches, and C. Dariescu, "The use of six-vectors in the theory of special relativity," Acta Phys. Hung. 70, 63-70 (1991); P. T. Papas, "The three-dimensional time equation," Lett. Nuovo Cimento 25, 429-434 J. Strnad, "Six-dimensional space- time and the Thomas precession," Lett. Nuovo Cimento 26, 535-536 (1979); and M. T. Teli, "General Lorentz transformations in six-dimensional space-time," Phys. Lett. A 128, 447-450 (1987).
-
(1991)
Acta Phys. Hung.
, vol.70
, pp. 63-70
-
-
Merches, I.1
Dariescu, C.2
-
89
-
-
51249185096
-
The three-dimensional time equation
-
(68); see D. Kalligas, P. S. Wesson, and C. F. W. Everitt, "The Classical tests in Kaluza-Klein gravity," preprint. A few references from the literature on six-dimensional relativity are: H. C. Chandola and B. S. Rajput, "Maxwell's equations in six-dimensional space-time," Indian J. Pure Appl Phys. 24, 58-64 (1986); E. A. B. Cole, "Centre-of-mass frame in six-dimensional special relativity," Lett. Nuovo Cimento, 28, 171-174 (1980); E. A. B. Cole, "New electromagnetic fields in six-dimensional special relativity," Nuovo Cimento, 60A, 1-11 (1980); E. A. B. Cole and S. A. Buchanan, "Space- time transformations in six-dimensional special relativity," J. Phys. A. Math. Gen. 15, L255-L257 (1982): I. Merches, and C. Dariescu, "The use of six-vectors in the theory of special relativity," Acta Phys. Hung. 70, 63-70 (1991); P. T. Papas, "The three-dimensional time equation," Lett. Nuovo Cimento 25, 429-434 J. Strnad, "Six-dimensional space- time and the Thomas precession," Lett. Nuovo Cimento 26, 535-536 (1979); and M. T. Teli, "General Lorentz transformations in six-dimensional space-time," Phys. Lett. A 128, 447-450 (1987).
-
Lett. Nuovo Cimento
, vol.25
, pp. 429-434
-
-
Papas, P.T.1
-
90
-
-
51249181897
-
Six-dimensional space-time and the Thomas precession
-
(68); see D. Kalligas, P. S. Wesson, and C. F. W. Everitt, "The Classical tests in Kaluza-Klein gravity," preprint. A few references from the literature on six-dimensional relativity are: H. C. Chandola and B. S. Rajput, "Maxwell's equations in six-dimensional space-time," Indian J. Pure Appl Phys. 24, 58-64 (1986); E. A. B. Cole, "Centre-of-mass frame in six-dimensional special relativity," Lett. Nuovo Cimento, 28, 171-174 (1980); E. A. B. Cole, "New electromagnetic fields in six-dimensional special relativity," Nuovo Cimento, 60A, 1-11 (1980); E. A. B. Cole and S. A. Buchanan, "Space- time transformations in six-dimensional special relativity," J. Phys. A. Math. Gen. 15, L255-L257 (1982): I. Merches, and C. Dariescu, "The use of six-vectors in the theory of special relativity," Acta Phys. Hung. 70, 63-70 (1991); P. T. Papas, "The three-dimensional time equation," Lett. Nuovo Cimento 25, 429-434 J. Strnad, "Six-dimensional space-time and the Thomas precession," Lett. Nuovo Cimento 26, 535-536 (1979); and M. T. Teli, "General Lorentz transformations in six-dimensional space-time," Phys. Lett. A 128, 447-450 (1987).
-
(1979)
Lett. Nuovo Cimento
, vol.26
, pp. 535-536
-
-
Strnad, J.1
-
91
-
-
38249037793
-
General Lorentz transformations in six-dimensional space-time
-
(68); see D. Kalligas, P. S. Wesson, and C. F. W. Everitt, "The Classical tests in Kaluza-Klein gravity," preprint. A few references from the literature on six-dimensional relativity are: H. C. Chandola and B. S. Rajput, "Maxwell's equations in six-dimensional space-time," Indian J. Pure Appl Phys. 24, 58-64 (1986); E. A. B. Cole, "Centre-of-mass frame in six-dimensional special relativity," Lett. Nuovo Cimento, 28, 171-174 (1980); E. A. B. Cole, "New electromagnetic fields in six-dimensional special relativity," Nuovo Cimento, 60A, 1-11 (1980); E. A. B. Cole and S. A. Buchanan, "Space- time transformations in six-dimensional special relativity," J. Phys. A. Math. Gen. 15, L255-L257 (1982): I. Merches, and C. Dariescu, "The use of six-vectors in the theory of special relativity," Acta Phys. Hung. 70, 63-70 (1991); P. T. Papas, "The three-dimensional time equation," Lett. Nuovo Cimento 25, 429-434 J. Strnad, "Six-dimensional space- time and the Thomas precession," Lett. Nuovo Cimento 26, 535-536 (1979); and M. T. Teli, "General Lorentz transformations in six-dimensional space-time," Phys. Lett. A 128, 447-450 (1987).
-
(1987)
Phys. Lett. A
, vol.128
, pp. 447-450
-
-
Teli, M.T.1
-
92
-
-
0042025795
-
Comment on the expanding Minkowski space' by A. A. Ungar
-
Helmuth Urbantke, "Comment on The expanding Minkowski space' by A. A. Ungar," Res. Math. 19, 189-191 (1991).
-
(1991)
Res. Math.
, vol.19
, pp. 189-191
-
-
Urbantke, H.1
-
93
-
-
0347865037
-
Thumbs partly up for Gravity Probe B
-
"Thumbs partly up for Gravity Probe B." Science News 147, No. 23, p. 367 (1995). Gravity Probe B is a drag-free satellite carrying gyroscopes around Earth. For details see C. W. Francis Everitt, William M. Fairbank, and L. I. Schiff, "Theoretical background and present status of the Stanford relativity-gyroscope experiment," in The Significance of Space Research for Fundamental Physics, Proc. Colloq. of the European Space Research Org. at Interlaken, Swizerland, 4 Sept. 1969; R. Vassar, J. V. Breakwell, C. W. F. Everitt, and R. A. VanPatten, "Orbit selection for the Stanford relativity gyroscope experiment," J. Spacecraft Rockets 19, 66-71 (1986). The general-relativistic Thomas precession involves several terms one of which is the special-relativistic Thomas precession studied in this article. The NASA program to perform a Thomas precession test of Einstein's theory of general relativity by measuring the precession of gyroscopes in Earth orbit was initiated by William M. Fairbank; see C. W. F. Everitt "Gravity Probe B: I. The scientific implications," The Sixth Marcel Grossmann Meeting on Relativity, Kyoto, Japan, June 23-29, 1991 (World Scientific Publ.); J. D. Fairbank, B. S. Deaver, Jr., C. W. F. Everitt, and P. F. Michelson, Near Zero: New Frontiers of Physics (Freeman, New York, 1988); "William Martin Fairbank (1917-1989)," Nature 342, 125 (1989).
-
(1995)
Science News
, vol.147
, Issue.23
, pp. 367
-
-
-
94
-
-
0345973619
-
Theoretical background and present status of the Stanford relativity-gyroscope experiment
-
Proc. Colloq. of the European Space Research Org. at Interlaken, Swizerland, 4 Sept.
-
"Thumbs partly up for Gravity Probe B." Science News 147, No. 23, p. 367 (1995). Gravity Probe B is a drag-free satellite carrying gyroscopes around Earth. For details see C. W. Francis Everitt, William M. Fairbank, and L. I. Schiff, "Theoretical background and present status of the Stanford relativity-gyroscope experiment," in The Significance of Space Research for Fundamental Physics, Proc. Colloq. of the European Space Research Org. at Interlaken, Swizerland, 4 Sept. 1969; R. Vassar, J. V. Breakwell, C. W. F. Everitt, and R. A. VanPatten, "Orbit selection for the Stanford relativity gyroscope experiment," J. Spacecraft Rockets 19, 66-71 (1986). The general-relativistic Thomas precession involves several terms one of which is the special-relativistic Thomas precession studied in this article. The NASA program to perform a Thomas precession test of Einstein's theory of general relativity by measuring the precession of gyroscopes in Earth orbit was initiated by William M. Fairbank; see C. W. F. Everitt "Gravity Probe B: I. The scientific implications," The Sixth Marcel Grossmann Meeting on Relativity, Kyoto, Japan, June 23-29, 1991 (World Scientific Publ.); J. D. Fairbank, B. S. Deaver, Jr., C. W. F. Everitt, and P. F. Michelson, Near Zero: New Frontiers of Physics (Freeman, New York, 1988); "William Martin Fairbank (1917-1989)," Nature 342, 125 (1989).
-
(1969)
The Significance of Space Research for Fundamental Physics
-
-
Everitt, C.W.F.1
Fairbank, W.M.2
Schiff, L.I.3
-
95
-
-
0019914437
-
Orbit selection for the Stanford relativity gyroscope experiment
-
"Thumbs partly up for Gravity Probe B." Science News 147, No. 23, p. 367 (1995). Gravity Probe B is a drag-free satellite carrying gyroscopes around Earth. For details see C. W. Francis Everitt, William M. Fairbank, and L. I. Schiff, "Theoretical background and present status of the Stanford relativity-gyroscope experiment," in The Significance of Space Research for Fundamental Physics, Proc. Colloq. of the European Space Research Org. at Interlaken, Swizerland, 4 Sept. 1969; R. Vassar, J. V. Breakwell, C. W. F. Everitt, and R. A. VanPatten, "Orbit selection for the Stanford relativity gyroscope experiment," J. Spacecraft Rockets 19, 66-71 (1986). The general-relativistic Thomas precession involves several terms one of which is the special-relativistic Thomas precession studied in this article. The NASA program to perform a Thomas precession test of Einstein's theory of general relativity by measuring the precession of gyroscopes in Earth orbit was initiated by William M. Fairbank; see C. W. F. Everitt "Gravity Probe B: I. The scientific implications," The Sixth Marcel Grossmann Meeting on Relativity, Kyoto, Japan, June 23-29, 1991 (World Scientific Publ.); J. D. Fairbank, B. S. Deaver, Jr., C. W. F. Everitt, and P. F. Michelson, Near Zero: New Frontiers of Physics (Freeman, New York, 1988); "William Martin Fairbank (1917-1989)," Nature 342, 125 (1989).
-
(1986)
J. Spacecraft Rockets
, vol.19
, pp. 66-71
-
-
Vassar, R.1
Breakwell, J.V.2
Everitt, C.W.F.3
VanPatten, R.A.4
-
96
-
-
0345973621
-
Gravity Probe B: I. The scientific implications
-
Kyoto, Japan, June 23-29, (World Scientific Publ.)
-
"Thumbs partly up for Gravity Probe B." Science News 147, No. 23, p. 367 (1995). Gravity Probe B is a drag-free satellite carrying gyroscopes around Earth. For details see C. W. Francis Everitt, William M. Fairbank, and L. I. Schiff, "Theoretical background and present status of the Stanford relativity-gyroscope experiment," in The Significance of Space Research for Fundamental Physics, Proc. Colloq. of the European Space Research Org. at Interlaken, Swizerland, 4 Sept. 1969; R. Vassar, J. V. Breakwell, C. W. F. Everitt, and R. A. VanPatten, "Orbit selection for the Stanford relativity gyroscope experiment," J. Spacecraft Rockets 19, 66-71 (1986). The general-relativistic Thomas precession involves several terms one of which is the special-relativistic Thomas precession studied in this article. The NASA program to perform a Thomas precession test of Einstein's theory of general relativity by measuring the precession of gyroscopes in Earth orbit was initiated by William M. Fairbank; see C. W. F. Everitt "Gravity Probe B: I. The scientific implications," The Sixth Marcel Grossmann Meeting on Relativity, Kyoto, Japan, June 23-29, 1991 (World Scientific Publ.); J. D. Fairbank, B. S. Deaver, Jr., C. W. F. Everitt, and P. F. Michelson, Near Zero: New Frontiers of Physics (Freeman, New York, 1988); "William Martin Fairbank (1917-1989)," Nature 342, 125 (1989).
-
(1991)
The Sixth Marcel Grossmann Meeting on Relativity
-
-
Everitt, C.W.F.1
-
97
-
-
0040112868
-
-
Freeman, New York
-
"Thumbs partly up for Gravity Probe B." Science News 147, No. 23, p. 367 (1995). Gravity Probe B is a drag-free satellite carrying gyroscopes around Earth. For details see C. W. Francis Everitt, William M. Fairbank, and L. I. Schiff, "Theoretical background and present status of the Stanford relativity-gyroscope experiment," in The Significance of Space Research for Fundamental Physics, Proc. Colloq. of the European Space Research Org. at Interlaken, Swizerland, 4 Sept. 1969; R. Vassar, J. V. Breakwell, C. W. F. Everitt, and R. A. VanPatten, "Orbit selection for the Stanford relativity gyroscope experiment," J. Spacecraft Rockets 19, 66-71 (1986). The general-relativistic Thomas precession involves several terms one of which is the special-relativistic Thomas precession studied in this article. The NASA program to perform a Thomas precession test of Einstein's theory of general relativity by measuring the precession of gyroscopes in Earth orbit was initiated by William M. Fairbank; see C. W. F. Everitt "Gravity Probe B: I. The scientific implications," The Sixth Marcel Grossmann Meeting on Relativity, Kyoto, Japan, June 23-29, 1991 (World Scientific Publ.); J. D. Fairbank, B. S. Deaver, Jr., C. W. F. Everitt, and P. F. Michelson, Near Zero: New Frontiers of Physics (Freeman, New York, 1988); "William Martin Fairbank (1917-1989)," Nature 342, 125 (1989).
-
(1988)
Near Zero: New Frontiers of Physics
-
-
Fairbank, J.D.1
Deaver B.S., Jr.2
Everitt, C.W.F.3
Michelson, P.F.4
-
98
-
-
0347234629
-
William Martin Fairbank (19171989)
-
"Thumbs partly up for Gravity Probe B." Science News 147, No. 23, p. 367 (1995). Gravity Probe B is a drag-free satellite carrying gyroscopes around Earth. For details see C. W. Francis Everitt, William M. Fairbank, and L. I. Schiff, "Theoretical background and present status of the Stanford relativity-gyroscope experiment," in The Significance of Space Research for Fundamental Physics, Proc. Colloq. of the European Space Research Org. at Interlaken, Swizerland, 4 Sept. 1969; R. Vassar, J. V. Breakwell, C. W. F. Everitt, and R. A. VanPatten, "Orbit selection for the Stanford relativity gyroscope experiment," J. Spacecraft Rockets 19, 66-71 (1986). The general-relativistic Thomas precession involves several terms one of which is the special-relativistic Thomas precession studied in this article. The NASA program to perform a Thomas precession test of Einstein's theory of general relativity by measuring the precession of gyroscopes in Earth orbit was initiated by William M. Fairbank; see C. W. F. Everitt "Gravity Probe B: I. The scientific implications," The Sixth Marcel Grossmann Meeting on Relativity, Kyoto, Japan, June 23-29, 1991 (World Scientific Publ.); J. D. Fairbank, B. S. Deaver, Jr., C. W. F. Everitt, and P. F. Michelson, Near Zero: New Frontiers of Physics (Freeman, New York, 1988); "William Martin Fairbank (1917-1989)," Nature 342, 125 (1989).
-
(1989)
Nature
, vol.342
, pp. 125
-
-
|