메뉴 건너뛰기




Volumn 19, Issue 12, 2000, Pages 1179-1187

Brain tissue classification of magnetic resonance images using partial volume modeling

Author keywords

Brain tissue; Classification; Markov random fields; Mixture; Multifractal dimension; Partial volume effects; Validation

Indexed keywords

ALGORITHM; ARTICLE; BRAIN; HISTOLOGY; HUMAN; NORMAL DISTRIBUTION; NUCLEAR MAGNETIC RESONANCE IMAGING; PROBABILITY; STATISTICAL MODEL;

EID: 0034351117     PISSN: 02780062     EISSN: None     Source Type: Journal    
DOI: 10.1109/42.897810     Document Type: Article
Times cited : (133)

References (36)
  • 2
    • 0028497967 scopus 로고
    • Multispectral analysis of the brain using magnetic resonance imaging
    • T. Taxt and A. LundervoldMultispectral analysis of the brain using magnetic resonance imaging, IEEE. Trans. Med. Imag., vol. 13, pp. 470-481, 1994.
    • (1994) IEEE. Trans. Med. Imag. , vol.13 , pp. 470-481
    • Taxt, T.1    Lundervold, A.2
  • 4
    • 0026197323 scopus 로고
    • Automatic segmentation of head MRI images by knowledge guided thresholding
    • H. Suzuki and J. ToriwakiAutomatic segmentation of head MRI images by knowledge guided thresholding, Comput. Med. Imag. Graph., vol. 15, pp. 233-240, 1991.
    • (1991) Comput. Med. Imag. Graph. , vol.15 , pp. 233-240
    • Suzuki, H.1    Toriwaki, J.2
  • 6
    • 0027609848 scopus 로고
    • Three-dimensional segmentation and interpolation of magnetic resonance brain images
    • M. Joliot and B. MazoyerThree-dimensional segmentation and interpolation of magnetic resonance brain images, IEEE Trans. Med. Imag., vol. 12, pp. 269-277, 1993.
    • (1993) IEEE Trans. Med. Imag. , vol.12 , pp. 269-277
    • Joliot, M.1    Mazoyer, B.2
  • 7
    • 0007451598 scopus 로고    scopus 로고
    • Bayesian segmentation of multislice brain magnetic resonance imaging using threedimensional Gibbsian priors
    • M. M. Chang, M. I. Sezan, A. M. Tekalp, and M. J. BergBayesian segmentation of multislice brain magnetic resonance imaging using threedimensional Gibbsian priors, Opt. Eng., vol. 35, pp. 3206-3221, 1996.
    • (1996) Opt. Eng. , vol.35 , pp. 3206-3221
    • Chang, M.M.1    Sezan, M.I.2    Tekalp, A.M.3    Berg, M.J.4
  • 10
    • 0032026525 scopus 로고    scopus 로고
    • A geometry- And intensitybased partial volume correction for MRI volumetric studies
    • F. Bello, A. C. F. Colchester, and S. A. RollA geometry- and intensitybased partial volume correction for MRI volumetric studies, Comput. Med. Imag. Graph, vol. 22-2, pp. 123-132, 1998.
    • (1998) Comput. Med. Imag. Graph , vol.22 , Issue.2 , pp. 123-132
    • Bello, F.1    Colchester, A.C.F.2    Roll, S.A.3
  • 13
    • 0026220222 scopus 로고
    • Partial volume tissue classification of multichannel magnetic resonance images-A mixel model
    • June
    • H. S. Choi, D. R. Haynor, and Y. KimPartial volume tissue classification of multichannel magnetic resonance images-A mixel model, IEEE. Trans. Med. Imag., vol. 10, pp. 395-407, June 1991.
    • (1991) IEEE. Trans. Med. Imag. , vol.10 , pp. 395-407
    • Choi, H.S.1    Haynor, D.R.2    Kim, Y.3
  • 14
    • 0032932780 scopus 로고    scopus 로고
    • A fuzzy clustering based segmentation system as support to diagnosis in medical imaging
    • F. Masulli and A. SchenoneA fuzzy clustering based segmentation system as support to diagnosis in medical imaging, Artif. Intell. Med., vol. 16-2, pp. 129-147, 1999.
    • (1999) Artif. Intell. Med. , vol.16 , Issue.2 , pp. 129-147
    • Masulli, F.1    Schenone, A.2
  • 15
    • 0031987381 scopus 로고    scopus 로고
    • Partial-volume Bayesian classification of material mixtures in MR volume data using voxel histograms
    • Feb.
    • D. H. Laidlaw, K. W. Fleischer, and A. H. BarrPartial-volume Bayesian classification of material mixtures in MR volume data using voxel histograms, IEEE Trans. Med. Imag., vol. 17, pp. 74-86, Feb. 1998.
    • (1998) IEEE Trans. Med. Imag. , vol.17 , pp. 74-86
    • Laidlaw, D.H.1    Fleischer, K.W.2    Barr, A.H.3
  • 16
    • 0027659237 scopus 로고
    • Quantification of MR images by mixture density and partial volume modeling
    • June
    • P. Santago and H. D. GageQuantification of MR images by mixture density and partial volume modeling, IEEE Trans. Med. Imag., vol. 12, pp. 566-574, June 1993.
    • (1993) IEEE Trans. Med. Imag. , vol.12 , pp. 566-574
    • Santago, P.1    Gage, H.D.2
  • 19
    • 0029277595 scopus 로고
    • Multifractal and generalized dimension of gray-tone digital images
    • N. Sarkar and S. KatsuragawaMultifractal and generalized dimension of gray-tone digital images, Signal Processing, vol. 42-1, pp. 181-190, 1995.
    • (1995) Signal Processing , vol.42 , Issue.1 , pp. 181-190
    • Sarkar, N.1    Katsuragawa, S.2
  • 23
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images
    • vol. PAMI-6
    • S. Geman and D. GemanStochastic relaxation, Gibbs distribution, and the Bayesian restoration of images, lEEETrans. Pattern Anal. Machine Intell., vol. PAMI-6, pp. 721-741, 1984.
    • (1984) LEEETrans. Pattern Anal. Machine Intell. , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 24
    • 0029394295 scopus 로고
    • Markov random field models for unsupervised segmentation of textured color images
    • Oct.
    • D. K. Panjwani and G. HealeyMarkov random field models for unsupervised segmentation of textured color images, IEEE Trans. Pattern Anal. Machine Intell., vol. 17, pp. 939-954, Oct. 1995.
    • (1995) IEEE Trans. Pattern Anal. Machine Intell. , vol.17 , pp. 939-954
    • Panjwani, D.K.1    Healey, G.2
  • 25
    • 0031147239 scopus 로고    scopus 로고
    • Estimation of generalized multisensor hidden Markov chains and unsupervised image segmentation
    • N. Giordana and M. PieczinskiEstimation of generalized multisensor hidden Markov chains and unsupervised image segmentation, IEEE. Trans. Pattern Anal. Machine Intell., vol. 19, pp. 465-475, 1997.
    • (1997) IEEE. Trans. Pattern Anal. Machine Intell. , vol.19 , pp. 465-475
    • Giordana, N.1    Pieczinski, M.2
  • 26
    • 0031283419 scopus 로고    scopus 로고
    • Volumetric object reconstruction using the 3D-MRF model-based segmentation
    • Dec.
    • S. M. Choi, J. E. Lee, and M. H. KimVolumetric object reconstruction using the 3D-MRF model-based segmentation, IEEE. Trans. Med. Imag., vol. 16, pp. 887-892, Dec. 1997.
    • (1997) IEEE. Trans. Med. Imag. , vol.16 , pp. 887-892
    • Choi, S.M.1    Lee, J.E.2    Kim, M.H.3
  • 27
    • 84952503973 scopus 로고
    • A suggestion for using powerful and informative tests of normality
    • R. B. D'Agostino, A. Belanger, and R. B. D'Agostino Jr.A suggestion for using powerful and informative tests of normality, American Statist., vol. 44, pp. 316-321, 1990.
    • (1990) American Statist. , vol.44 , pp. 316-321
    • D'Agostino, R.B.1    Belanger, A.2    D'Agostino Jr., R.B.3
  • 29
    • 0000913755 scopus 로고
    • Spatial interaction and the statistical analysis of lattice systems
    • J. BesagSpatial interaction and the statistical analysis of lattice systems,/ Roy. Stat. Soc. Ser. B, vol. 36, pp. 192-242, 1974.
    • (1974) Roy. Stat. Soc. Ser. B , vol.36 , pp. 192-242
    • Besag, J.1
  • 30
    • 85037490064 scopus 로고    scopus 로고
    • A. Cocosco, V. Kollokian, R. K.-S. Kwan, and A. C. Evans. Brain web: Online interface to a 3D MRI simulated brain database. [Online]. Available: http: //www.bic.mni.mcgill.ca/brainweb
    • A. Cocosco, V. Kollokian, R. K.-S. Kwan, and A. C. Evans. Brain web: Online interface to a 3D MRI simulated brain database. [Online]. Available: http: //www.bic.mni.mcgill.ca/brainweb
  • 33
    • 84973587732 scopus 로고
    • A coefficient of agreement for nominal scales
    • J. CohenA coefficient of agreement for nominal scales, Education Psychological Meas., vol. 20, pp. 37-46, 1960.
    • (1960) Education Psychological Meas. , vol.20 , pp. 37-46
    • Cohen, J.1
  • 36
    • 0031969773 scopus 로고    scopus 로고
    • Correcting scaling errors in tomographic Images using a nine degree of freedom registration algorithm
    • D. L. G. Hill, C. R. Maurer, J. C. Studholme, J. M. Fitzpatrick, and D. J. HawkesCorrecting scaling errors in tomographic Images using a nine degree of freedom registration algorithm, J. Comput. Assist. Tomogr., vol. 22-2, pp. 317-323, 1998.
    • (1998) J. Comput. Assist. Tomogr. , vol.22 , Issue.2 , pp. 317-323
    • Hill, D.L.G.1    Maurer, C.R.2    Studholme, J.C.3    Fitzpatrick, J.M.4    Hawkes, D.J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.