메뉴 건너뛰기




Volumn 35, Issue 11, 1996, Pages 3206-3221

Bayesian segmentation of multislice brain magnetic resonance imaging using three-dimensional Gibbsian priors

Author keywords

Bayesian segmentation; Highest confidence first method; Multislice magnetic resonance imaging; Three dimensional Gibbs random fields

Indexed keywords


EID: 0007451598     PISSN: 00913286     EISSN: None     Source Type: Journal    
DOI: 10.1117/1.601059     Document Type: Article
Times cited : (12)

References (23)
  • 1
  • 2
    • 0025000563 scopus 로고
    • Three-dimensional segmentation of MR images of the head using probability and connectivity
    • Nov./Dec.
    • H. E. Cline, W. E. Lorensen, R. Kikinis, and F. Jolesz, "Three-dimensional segmentation of MR images of the head using probability and connectivity," J. Comput. Assisted Tomography 14, 1037-1045 (Nov./Dec. 1990).
    • (1990) J. Comput. Assisted Tomography , vol.14 , pp. 1037-1045
    • Cline, H.E.1    Lorensen, W.E.2    Kikinis, R.3    Jolesz, F.4
  • 4
    • 0026608593 scopus 로고
    • Interactive 3D segmentation of MRI and CT volumes using morphological operations
    • K. H. Hoehne and W. A. Hanson, "Interactive 3D segmentation of MRI and CT volumes using morphological operations," J. Comput. Assisted Tomography 16(2), 285-294 (1992).
    • (1992) J. Comput. Assisted Tomography , vol.16 , Issue.2 , pp. 285-294
    • Hoehne, K.H.1    Hanson, W.A.2
  • 7
    • 18844459095 scopus 로고
    • Gibbs random fields, image segmentation, and optimization methods: A tutorial overview
    • Eastman Kodak Company
    • M. M. Chang, A. J. Patti, M. I. Sezan, and A. M. Tekalp, "Gibbs random fields, image segmentation, and optimization methods: a tutorial overview," Technical Report, Eastman Kodak Company (1993).
    • (1993) Technical Report
    • Chang, M.M.1    Patti, A.J.2    Sezan, M.I.3    Tekalp, A.M.4
  • 10
    • 5744249209 scopus 로고
    • Equations of state calculations by fast computing machines
    • N. Metropolis, A. Rosenbluth, and A. Teller, "Equations of state calculations by fast computing machines," J. Chem. Phys. 21, 1087-1091 (1953).
    • (1953) J. Chem. Phys. , vol.21 , pp. 1087-1091
    • Metropolis, N.1    Rosenbluth, A.2    Teller, A.3
  • 11
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images
    • S. German and D. Geman, "Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images," IEEE Trans. Pattern Anal. Mach. Intell. 6, 721-741 (1984).
    • (1984) IEEE Trans. Pattern Anal. Mach. Intell. , vol.6 , pp. 721-741
    • German, S.1    Geman, D.2
  • 12
    • 0000013152 scopus 로고
    • On the statistical analysis of dirty pictures
    • J. Besag, "On the statistical analysis of dirty pictures," J. Roy. Statist. Soc. 48(3), 259-302 (1986).
    • (1986) J. Roy. Statist. Soc. , vol.48 , Issue.3 , pp. 259-302
    • Besag, J.1
  • 13
    • 0028463197 scopus 로고
    • Segmentation of magnetic resonance brain images using analogue constraint satisfaction neural networks
    • A. J. Worth and D. N. Kennedy, "Segmentation of magnetic resonance brain images using analogue constraint satisfaction neural networks," Image Vision Comput. 12, 345-354 (1994).
    • (1994) Image Vision Comput. , vol.12 , pp. 345-354
    • Worth, A.J.1    Kennedy, D.N.2
  • 14
    • 0026220222 scopus 로고
    • Partial volume tissue classification of multichannel magnetic resonance images - A mixed model
    • H. S. Choi, R. R. Haynor, and Y. Kim, "Partial volume tissue classification of multichannel magnetic resonance images - a mixed model," IEEE Trans. Med. Imaging 10(3), 395-407 (1991).
    • (1991) IEEE Trans. Med. Imaging , vol.10 , Issue.3 , pp. 395-407
    • Choi, H.S.1    Haynor, R.R.2    Kim, Y.3
  • 15
    • 20444504050 scopus 로고
    • The theory and practice of Bayesian image labeling
    • P. B. Chou and C. M. Brown, "The theory and practice of Bayesian image labeling," Int. J. Comput. Vision 4, 185-210 (1990).
    • (1990) Int. J. Comput. Vision , vol.4 , pp. 185-210
    • Chou, P.B.1    Brown, C.M.2
  • 16
    • 0023123263 scopus 로고
    • Modeling and segmentation of noisy and textured images using Gibbs random field
    • Jan.
    • H. Denn and H. Elliott, "Modeling and segmentation of noisy and textured images using Gibbs random field," IEEE Trans. Pattern Anal. Mach. Intell. PAMI-9, 39-55 (Jan. 1987).
    • (1987) IEEE Trans. Pattern Anal. Mach. Intell. , vol.PAMI-9 , pp. 39-55
    • Denn, H.1    Elliott, H.2
  • 17
    • 0024681039 scopus 로고
    • A generalized EM algorithm for 3-D Bayesian reconstruction from Poisson data using Gibbs priors
    • June
    • T. Hebert and R. Leahy, "A generalized EM algorithm for 3-D Bayesian reconstruction from Poisson data using Gibbs priors," IEEE Trans. Med. Imaging 8, 194-202 (June 1989).
    • (1989) IEEE Trans. Med. Imaging , vol.8 , pp. 194-202
    • Hebert, T.1    Leahy, R.2
  • 18
    • 0026842556 scopus 로고
    • An adaptive clustering algorithm for image segmentation
    • Apr.
    • T. N. Pappas, "An adaptive clustering algorithm for image segmentation," IEEE Trans. Signal Process. SP-40, 901-914 (Apr. 1992).
    • (1992) IEEE Trans. Signal Process , vol.SP-40 , pp. 901-914
    • Pappas, T.N.1
  • 19
    • 0001370942 scopus 로고
    • Adaptive Bayesian segmentation of color images
    • M. M. Chang, M. I. Sezan, and A. M. Tekalp, "Adaptive Bayesian segmentation of color images," J. Electron. Imaging, 3(4), 404-414 (1994).
    • (1994) J. Electron. Imaging , vol.3 , Issue.4 , pp. 404-414
    • Chang, M.M.1    Sezan, M.I.2    Tekalp, A.M.3
  • 20
    • 0000913755 scopus 로고
    • Spatial interaction and the statistical analysis of lattice systems
    • J. Besag, "Spatial interaction and the statistical analysis of lattice systems," J. R. Statist. Soc. 36(2), 192-326 (1974).
    • (1974) J. R. Statist. Soc. , vol.36 , Issue.2 , pp. 192-326
    • Besag, J.1
  • 23
    • 0025560661 scopus 로고
    • Model-based segmentation and estimation of 3D surfaces from two or more intensity images using Markov random fields
    • J. Subrahmonia, Y. P. Young, and D. B. Cooper, "Model-based segmentation and estimation of 3D surfaces from two or more intensity images using Markov random fields," in Proc. Int. Conf. Pattern Recognition, pp. 390-397 (1990).
    • (1990) Proc. Int. Conf. Pattern Recognition , pp. 390-397
    • Subrahmonia, J.1    Young, Y.P.2    Cooper, D.B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.