-
1
-
-
85023953657
-
-
APECS: Arithmetic of Plane Elliptic Curves, Requires Maple
-
I. Connell, “APECS: Arithmetic of Plane Elliptic Curves”, See ftp.math.mcgill.ca/pub/apecs/. Requires Maple.
-
-
-
Connell, I.1
-
3
-
-
84860018865
-
The square-free sieve and the rank of elliptic curves
-
F. Gouvea and B. Mazur, “The square-free sieve and the rank of elliptic curves”, J. Amer. Math. Soc. 4: 1 (1991), 1-23.
-
(1991)
J. Amer. Math. Soc
, vol.4
, Issue.1
, pp. 1-23
-
-
Gouvea, F.1
Mazur, B.2
-
4
-
-
0039703187
-
Introduction to elliptic curves and modular forms
-
Springer, New York, 1984. Second edition
-
N. Koblitz, Introduction to elliptic curves and modular forms, Graduate Texts in Math. 97, Springer, New York, 1984. Second edition, 1993.
-
(1993)
Graduate Texts in Math
, vol.97
-
-
Koblitz, N.1
-
5
-
-
0000814375
-
All congruent numbers less than 2000
-
G. Kramarz, “All congruent numbers less than 2000”, Math. Ann. 273: 2 (1986), 337-340.
-
(1986)
Math. Ann
, vol.273
, Issue.2
, pp. 337-340
-
-
Kramarz, G.1
-
6
-
-
22044442465
-
All congruent numbers less than 40000
-
F. R. Nemenzo, “All congruent numbers less than 40000”, Proc. Japan Acad. Ser. A Math. Sci. 74: 1 (1998), 29-31.
-
(1998)
Proc. Japan Acad. Ser. A Math. Sci
, vol.74
, Issue.1
, pp. 29-31
-
-
Nemenzo, F.R.1
-
7
-
-
0002257951
-
All congruent numbers less than 10 000
-
K. Noda and H. Wada, “All congruent numbers less than 10 000”, Proc. Japan Acad. Ser. A Math. Sci. 69: 6 (1993), 175-178.
-
(1993)
Proc. Japan Acad. Ser. A Math. Sci
, vol.69
, Issue.6
, pp. 175-178
-
-
Noda, K.1
Wada, H.2
-
8
-
-
0034348615
-
Ranks of elliptic curves in families of quadratic twists
-
K. Rubin and A. Silverberg, “Ranks of elliptic curves in families of quadratic twists”, Experiment. Math. 9: 4 (2000), 583-590.
-
(2000)
Experiment. Math
, vol.9
, Issue.4
, pp. 583-590
-
-
Rubin, K.1
Silverberg, A.2
-
9
-
-
0003474033
-
-
Graduate Texts in Math., Springer, New York
-
J. H. Silverman, The arithmetic of elliptic curves, vol. 106, Graduate Texts in Math., Springer, New York, 1986.
-
(1986)
The Arithmetic of Elliptic Curves
, vol.106
-
-
Silverman, J.H.1
-
10
-
-
0000919718
-
A classical Diophantine problem and modular forms of weight 3/2
-
J. B. Tunnell, “A classical Diophantine problem and modular forms of weight 3/2”, Invent. Math. 72:2 (1983), 323-334.
-
(1983)
Invent. Math
, vol.72
, Issue.2
, pp. 323-334
-
-
Tunnell, J.B.1
|