-
1
-
-
0002153011
-
How many rational points can a curve have?
-
Birkhauser, Boston
-
L. Caporaso, J. Harris, and B. Mazur, “How many rational points can a curve have?”, pp. 13-31 in The moduli space of curves (Texel Island, 1994), edited by R. Dijkgraaf et al., Prog. Math. 129, Birkhauser, Boston, 1995.
-
(1995)
The Moduli Space of Curves (Texel Island, 1994), Edited by R. Dijkgraaf Et Al., Prog. Math
, vol.129
, pp. 13-31
-
-
Caporaso, L.1
Harris, J.2
Mazur, B.3
-
2
-
-
84860018865
-
The square-free sieve and the rank of elliptic curves
-
F. Gouvea and B. Mazur, “The square-free sieve and the rank of elliptic curves”, J. Amer. Math. Soc. 4: 1 (1991), 1-23.
-
(1991)
J. Amer. Math. Soc
, vol.4
, Issue.1
, pp. 1-23
-
-
Gouvea, F.1
Mazur, B.2
-
3
-
-
0002357793
-
The size of Selmer groups for the congruent number problem
-
D. R. Heath-Brown, “The size of Selmer groups for the congruent number problem”, Invent. Math. 111: 1 (1993), 171-195.
-
(1993)
Invent. Math
, vol.111
, Issue.1
, pp. 171-195
-
-
Heath-Brown, D.R.1
-
4
-
-
0000339724
-
The size of Selmer groups for the congruent number problem. II
-
D. R. Heath-Brown, “The size of Selmer groups for the congruent number problem. II”, Invent. Math. 118: 2 (1994), 331-370.
-
(1994)
Invent. Math
, vol.118
, Issue.2
, pp. 331-370
-
-
Heath-Brown, D.R.1
-
5
-
-
0000352123
-
Diophantische Analysis und Modulfunktionen
-
K. Heegner, “Diophantische Analysis und Modulfunktionen”, Math. Z. 56 (1952), 227-253.
-
(1952)
Math. Z
, vol.56
, pp. 227-253
-
-
Heegner, K.1
-
7
-
-
0000814375
-
All congruent numbers less than 2000
-
G. Kramarz, “All congruent numbers less than 2000”, Math. Ann. 273: 2 (1986), 337-340.
-
(1986)
Math. Ann
, vol.273
, Issue.2
, pp. 337-340
-
-
Kramarz, G.1
-
8
-
-
51649164688
-
Modular curves and the Eisenstein ideal
-
B. Mazur, “Modular curves and the Eisenstein ideal”, Inst. Hautes Etudes Sci. Publ. Math. 47 (1977), 33-186 (1978).
-
(1978)
Inst. Hautes Etudes Sci. Publ. Math
, vol.47
, Issue.1977
, pp. 33-186
-
-
Mazur, B.1
-
9
-
-
0000285356
-
Rang de courbes elliptiques dinvariant donne
-
J.-F. Mestre, “Rang de courbes elliptiques d’invariant donne”, C. R. Acad. Sci. Paris Ser. I Math. 314: 12 (1992), 919-922.
-
(1992)
C. R. Acad. Sci. Paris Ser. I Math
, vol.314
, Issue.12
, pp. 919-922
-
-
Mestre, J.-F.1
-
10
-
-
0001309249
-
Rang de certaines families de courbes elliptiques dinvariant donne
-
J.-F. Mestre, “Rang de certaines families de courbes elliptiques d’invariant donne”, C. R. Acad. Sci. Paris Ser. I Math. 327: 8 (1998), 763-764.
-
(1998)
C. R. Acad. Sci. Paris Ser. I Math
, vol.327
, Issue.8
, pp. 763-764
-
-
Mestre, J.-F.1
-
11
-
-
0034348630
-
Rank computations for the congruent number elliptic curves
-
N. Rogers, “Rank computations for the congruent number elliptic curves”, Experiment. Math. 9: 4 (2000), 591-594.
-
(2000)
Experiment. Math
, vol.9
, Issue.4
, pp. 591-594
-
-
Rogers, N.1
-
12
-
-
0000162218
-
Un analogue du calcul de Heegner
-
P. Satge, “Un analogue du calcul de Heegner”, Invent. Math. 87: 2 (1987), 425-439.
-
(1987)
Invent. Math
, vol.87
, Issue.2
, pp. 425-439
-
-
Satge, P.1
-
13
-
-
0003474033
-
-
Graduate Texts in Math., Springer, New York
-
J. H. Silverman, The arithmetic of elliptic curves, vol. 106, Graduate Texts in Math., Springer, New York, 1986.
-
(1986)
The Arithmetic of Elliptic Curves
, vol.106
-
-
Silverman, J.H.1
-
14
-
-
84968521660
-
On ranks of twists of elliptic curves and power-free values of binary forms
-
C. L. Stewart and J. Top, “On ranks of twists of elliptic curves and power-free values of binary forms”, J. Amer. Math. Soc. 8: 4 (1995), 943-973.
-
(1995)
J. Amer. Math. Soc
, vol.8
, Issue.4
-
-
Stewart, C.L.1
Top, J.2
-
17
-
-
0002200285
-
Numerical investigations related to the L-series of certain elliptic curves
-
D. Zagier and G. Kramarz, “Numerical investigations related to the L-series of certain elliptic curves”, J. Indian Math. Soc. (N.S.) (1987), 51-69.
-
(1987)
J. Indian Math. Soc. (N.S.)
, pp. 51-69
-
-
Zagier, D.1
Kramarz, G.2
|