메뉴 건너뛰기




Volumn 107, Issue 2, 2000, Pages 129-139

Crofton's differential equation

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0034344802     PISSN: 00029890     EISSN: None     Source Type: Journal    
DOI: 10.2307/2589434     Document Type: Article
Times cited : (12)

References (14)
  • 1
    • 0001221708 scopus 로고
    • On the distribution of a random triangle
    • V. Alagar, On the Distribution of a Random Triangle, J. Appl. Prob. 14 (1977) 284-297.
    • (1977) J. Appl. Prob. , vol.14 , pp. 284-297
    • Alagar, V.1
  • 2
    • 0000164819 scopus 로고
    • Integrals on a moving manifold and geometric probability
    • A. Baddeley, Integrals on a Moving Manifold and Geometric Probability, Adv. Appl. Prob. 9 (1977) 588-603.
    • (1977) Adv. Appl. Prob. , vol.9 , pp. 588-603
    • Baddeley, A.1
  • 5
    • 0002236598 scopus 로고    scopus 로고
    • The average distance between points in geometric figures
    • S. Dunbar, The Average Distance Between Points in Geometric Figures, College Math. J. 28 (1997) 187-197.
    • (1997) College Math. J. , vol.28 , pp. 187-197
    • Dunbar, S.1
  • 6
    • 0030536918 scopus 로고    scopus 로고
    • Random triangles in n dimensions
    • B. Eisenberg and R. Sullivan, Random Triangles in n Dimensions, Amer. Math. Monthly 103 (1996) 308-318.
    • (1996) Amer. Math. Monthly , vol.103 , pp. 308-318
    • Eisenberg, B.1    Sullivan, R.2
  • 8
    • 0002238248 scopus 로고
    • Acute triangles in the n-ball
    • G. Hall, Acute Triangles in the n-Ball, J. Appl. Prob. 19 (1982) 712-715.
    • (1982) J. Appl. Prob. , vol.19 , pp. 712-715
    • Hall, G.1
  • 10
    • 0002323893 scopus 로고
    • What is the expected volume of a simplex whose vertices are chosen at random from a given convex body?
    • V. Klee, What is the Expected Volume of a Simplex whose Vertices are Chosen at Random from a Given Convex Body?, Amer. Math. Monthly 76 (1969) 286-288.
    • (1969) Amer. Math. Monthly , vol.76 , pp. 286-288
    • Klee, V.1
  • 13
    • 0002173667 scopus 로고
    • A more general form of a theorem of Crofton
    • H. Ruben and W. Reed, A More General Form of a Theorem of Crofton, J. Appl. Prob. 10 (1973) 479-482.
    • (1973) J. Appl. Prob. , vol.10 , pp. 479-482
    • Ruben, H.1    Reed, W.2
  • 14
    • 0004231341 scopus 로고
    • J. W. Arrowsmith Ltd., Bristol England
    • H. Solomon, Geometric Probability, J. W. Arrowsmith Ltd., Bristol England, 1978.
    • (1978) Geometric Probability
    • Solomon, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.