메뉴 건너뛰기




Volumn 103, Issue 4, 1996, Pages 308-318

Random triangles in n dimensions

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0030536918     PISSN: 00029890     EISSN: None     Source Type: Journal    
DOI: 10.2307/2975187     Document Type: Article
Times cited : (16)

References (13)
  • 1
    • 0000164819 scopus 로고
    • Integrals on a moving manifold and geometric probability
    • Baddeley, A., Integrals on a moving manifold and geometric probability. Adv. Appl. Prob. 9:588-603, 1977.
    • (1977) Adv. Appl. Prob. , vol.9 , pp. 588-603
    • Baddeley, A.1
  • 3
    • 84972557324 scopus 로고
    • A note on the volume of a random polytope in a tetrahedron
    • Buchta, C., A Note on the Volume of a Random Polytope in a Tetrahedron. Illinois J. Math. 30:653-659, 1986.
    • (1986) Illinois J. Math. , vol.30 , pp. 653-659
    • Buchta, C.1
  • 4
    • 0040164839 scopus 로고
    • Problem 58, reprinted (with A Tangled Tale), Dover Publications, New York
    • Carroll, L., Pillow Problems, 1893. 4th edition (1895) Problem 58, pp. 14, 25, 83-84; reprinted (with A Tangled Tale), Dover Publications, New York, 1958.
    • (1895) Pillow Problems, 1893. 4th Edition , pp. 14
    • Carroll, L.1
  • 7
    • 0040164831 scopus 로고
    • There are three times as many obtuse-angled triangles as there are acute-angled ones
    • Guy, R. K., There are three times as many obtuse-angled triangles as there are acute-angled ones. Math. Mag. 66:175-178, 1993.
    • (1993) Math. Mag. , vol.66 , pp. 175-178
    • Guy, R.K.1
  • 8
    • 0002238248 scopus 로고
    • Acute triangles in the n-ball
    • Hall, G. R., Acute Triangles in the n-Ball. J. Appl. Prob. 19:712-715, 1982.
    • (1982) J. Appl. Prob. , vol.19 , pp. 712-715
    • Hall, G.R.1
  • 10
    • 0040164834 scopus 로고
    • A problem in geometric probability
    • Langford, E., A Problem in Geometric Probability. Math. Mag. 43:237-244, 1970.
    • (1970) Math. Mag. , vol.43 , pp. 237-244
    • Langford, E.1
  • 12
    • 84972539565 scopus 로고
    • A Lewis Carroll pillow problem: Probability of an obtuse triangle
    • Portnoy, S., A Lewis Carroll Pillow Problem: Probability of an Obtuse Triangle. Statist. Science 9:279-284, 1994.
    • (1994) Statist. Science , vol.9 , pp. 279-284
    • Portnoy, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.