메뉴 건너뛰기




Volumn 21, Issue 3, 1997, Pages 327-346

Experiment design considerations for non-linear system identification using neural networks

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER SIMULATION; NEURAL NETWORKS; NONLINEAR SYSTEMS; PH;

EID: 0030787191     PISSN: 00981354     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0098-1354(96)00003-8     Document Type: Article
Times cited : (50)

References (23)
  • 1
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike H., A new look at the statistical model identification. IEEE Trans. AC-19, 716-722 (1974).
    • (1974) IEEE Trans. , vol.AC-19 , pp. 716-722
    • Akaike, H.1
  • 2
    • 0025010309 scopus 로고
    • Use of neural nets for dynamic modelling and control of chemical process systems
    • Bhat N. and T.J. McAvoy, Use of neural nets for dynamic modelling and control of chemical process systems. Computers Chem. Engng. 14(4/5), 573-583 (1990).
    • (1990) Computers Chem. Engng. , vol.14 , Issue.4-5 , pp. 573-583
    • Bhat, N.1    McAvoy, T.J.2
  • 4
    • 0022752513 scopus 로고
    • Correlation based model validity tests for non-linear models
    • Billings S.A. and W.S.F. Voon, Correlation based model validity tests for non-linear models. Int. J. Control 44, 235-244 (1986).
    • (1986) Int. J. Control , vol.44 , pp. 235-244
    • Billings, S.A.1    Voon, W.S.F.2
  • 5
    • 84877479752 scopus 로고
    • Properties of neural networks with applications to modelling non-linear dynamical systems
    • Billings S.A., H.B. Jamaluddin and S. Chen, Properties of neural networks with applications to modelling non-linear dynamical systems. Int. J. Control 55, 193-224 (1992).
    • (1992) Int. J. Control , vol.55 , pp. 193-224
    • Billings, S.A.1    Jamaluddin, H.B.2    Chen, S.3
  • 6
    • 0025448276 scopus 로고
    • Non-linear system identification using neural networks
    • Chen S., S.A. Billings and P.M. Grant, Non-linear system identification using neural networks. Int. J. Control 51, 1191-1214 (1990a).
    • (1990) Int. J. Control , vol.51 , pp. 1191-1214
    • Chen, S.1    Billings, S.A.2    Grant, P.M.3
  • 7
    • 0025669403 scopus 로고
    • Practical identification of NARMAX models using radial basis functions
    • Chen S., S.A. Billings, C.F.N. Cowan and P.M. Grant, Practical identification of NARMAX models using radial basis functions. Int. J. Control 52, 1327-1350 (1990b).
    • (1990) Int. J. Control , vol.52 , pp. 1327-1350
    • Chen, S.1    Billings, S.A.2    Cowan, C.F.N.3    Grant, P.M.4
  • 8
    • 0026882029 scopus 로고
    • Adaptive control of nonlinear systems using neural networks
    • Chen F.C. and H.K. Khalil, Adaptive control of nonlinear systems using neural networks. Int. J. Control 55, 1299-1317 (1992).
    • (1992) Int. J. Control , vol.55 , pp. 1299-1317
    • Chen, F.C.1    Khalil, H.K.2
  • 9
    • 0024861871 scopus 로고
    • Continuous value neural networks with two hidden layers are sufficient
    • G. Cybenko, Continuous value neural networks with two hidden layers are sufficient. Math. Contr. Signal and Sys. 2, 303-314 (1989).
    • (1989) Math. Contr. Signal and Sys. , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 10
    • 0042507925 scopus 로고
    • A practical application of neural modelling and predictive control
    • (Eds, Page, G.F., Gomm, J.B. and Williams, D.), Chapman and Hall, U.K.
    • Evans J.T., Gomm J.B., Williams D., Lisboa P.J.G. and To Q.S., A practical application of neural modelling and predictive control. In Application of Neural Networks to Modelling and Control, (Eds, Page, G.F., Gomm, J.B. and Williams, D.), 74-88. Chapman and Hall, U.K. 1993.
    • (1993) Application of Neural Networks to Modelling and Control , pp. 74-88
    • Evans, J.T.1    Gomm, J.B.2    Williams, D.3    Lisboa, P.J.G.4    To, Q.S.5
  • 11
    • 0028750949 scopus 로고
    • Accurate multi-step-ahead predictions of non-linear systems with the MLP neural network using spread encoding
    • Gomm J.B., P.J.G. Lisboa, D. Williams and J.T. Evans, Accurate multi-step-ahead predictions of non-linear systems with the MLP neural network using spread encoding. Trans. Ints. Meas. Control 16, 203-213 (1994).
    • (1994) Trans. Ints. Meas. Control , vol.16 , pp. 203-213
    • Gomm, J.B.1    Lisboa, P.J.G.2    Williams, D.3    Evans, J.T.4
  • 12
    • 0026849116 scopus 로고
    • Study of the control relevant properties of backpropagation neural network models of nonlinear dynamical systems
    • Hernández E. and Y. Arkun, Study of the control relevant properties of backpropagation neural network models of nonlinear dynamical systems. Computers Chem. Engng. 16, 227-240(1992).
    • (1992) Computers Chem. Engng. , vol.16 , pp. 227-240
    • Hernández, E.1    Arkun, Y.2
  • 13
    • 0021835689 scopus 로고
    • Neural computation of decisions in optimization problems
    • Hopfield, J. J., Neural computation of decisions in optimization problems. Biology. Cybern. 52, 141-152 (1985).
    • (1985) Biology. Cybern. , vol.52 , pp. 141-152
    • Hopfield, J.J.1
  • 14
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K., M. Stinchcombe and H. White, Multilayer feedforward networks are universal approximators. Neural Networks 2, 359-366 (1989).
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 15
    • 0026954775 scopus 로고
    • Neural networks for control systems - A survey
    • Hunt K. J., D. Sbarbaro, R. Zbikowski and P. J. Gawthrop, Neural networks for control systems - a survey. Automatica 28(6), 1083-1112 (1992).
    • (1992) Automatica , vol.28 , Issue.6 , pp. 1083-1112
    • Hunt, K.J.1    Sbarbaro, D.2    Zbikowski, R.3    Gawthrop, P.J.4
  • 16
    • 0019054968 scopus 로고
    • Practical aspects of process identification
    • Isermann R., Practical aspects of process identification. Automatica 16, 575-587 (1980).
    • (1980) Automatica , vol.16 , pp. 575-587
    • Isermann, R.1
  • 17
    • 0022011031 scopus 로고
    • Input-output parametric models for non-linear systems: 1. deterministic non-linear systems: 2. stochastic non-linear systems
    • Leontaritis I. J. and S. A. Billings, Input-output parametric models for non-linear systems: 1. deterministic non-linear systems: 2. stochastic non-linear systems. Int. J. Control 41, 303-344(1985).
    • (1985) Int. J. Control , vol.41 , pp. 303-344
    • Leontaritis, I.J.1    Billings, S.A.2
  • 20
    • 0000857773 scopus 로고
    • Identification of non-linear processes using reciprocal multiquadric functions
    • Pottmann M. and D. E. Seborg, Identification of non-linear processes using reciprocal multiquadric functions. J. Proc. Control 2(4), 189-203 (1992).
    • (1992) J. Proc. Control , vol.2 , Issue.4 , pp. 189-203
    • Pottmann, M.1    Seborg, D.E.2
  • 21
    • 0000646059 scopus 로고
    • Learning internal representations by error propagation
    • (Rumelhart D. E. and McClelland J. L., Eds.), MIT Press, Cambridge, M.A.
    • Rumelhart D. E., G. E. Hinton and R. J. Williams, Learning internal representations by error propagation. in Parallel Distributed Processing (Rumelhart D. E. and McClelland J. L., Eds.), MIT Press, Cambridge, M.A. (1986).
    • (1986) Parallel Distributed Processing
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 22
    • 0026367993 scopus 로고
    • Neural net based model predictive control
    • Saint Donat J., N. Bhat and T. J. McAvoy, Neural net based model predictive control. Int. J. Control 54(6), 1453-1468 (1991).
    • (1991) Int. J. Control , vol.54 , Issue.6 , pp. 1453-1468
    • Saint Donat, J.1    Bhat, N.2    McAvoy, T.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.