-
1
-
-
21344478362
-
-
Wakita, J.-I., Komatsu, K., Nakahara, A., Matsyama, T., Matsushita, M.: J. Phys. Soc. Japan 63, 1205 (1994);
-
(1994)
J. Phys. Soc. Japan
, vol.63
, pp. 1205
-
-
Wakita, J.-I.1
Komatsu, K.2
Nakahara, A.3
Matsyama, T.4
Matsushita, M.5
-
2
-
-
0031446263
-
-
Shapiro, J.A., Dworkin, M. (eds), Oxford University Press, Oxford
-
see also Matsushita, M.: In: Shapiro, J.A., Dworkin, M. (eds) Bacteria as Multicellular Organisms, Oxford University Press, Oxford, 1997
-
(1997)
Bacteria as Multicellular Organisms
-
-
Matsushita, M.1
-
3
-
-
0029946461
-
-
Rauprich, O., Matsushita, M., Weijer, C.J., Siegert, F., Esipov, S.E., Shapiro, J.A.: J. Bacteriology 178, 6525 (1996);
-
(1996)
J. Bacteriology
, vol.178
, pp. 6525
-
-
Rauprich, O.1
Matsushita, M.2
Weijer, C.J.3
Siegert, F.4
Esipov, S.E.5
Shapiro, J.A.6
-
5
-
-
0028183962
-
-
Ben-Jacob, E., Schochet, O., Tenenbaum, A., Cohen, I., Czlrok, A., Vicsek, T.: Nature 368, 46 (1994);
-
(1994)
Nature
, vol.368
, pp. 46
-
-
Ben-Jacob, E.1
Schochet, O.2
Tenenbaum, A.3
Cohen, I.4
Czlrok, A.5
Vicsek, T.6
-
6
-
-
25544479059
-
-
Ben-Jacob, E., Shmueli, H., Shochet, O., Tenebaum, A.: Physica A 187, 378 (1992)
-
(1992)
Physica A
, vol.187
, pp. 378
-
-
Ben-Jacob, E.1
Shmueli, H.2
Shochet, O.3
Tenebaum, A.4
-
7
-
-
33845301457
-
-
and Physica A 202, 1 (1994)
-
(1994)
Physica A
, vol.202
, pp. 1
-
-
-
9
-
-
33845284190
-
-
and Nature 376, 49 (1995)
-
(1995)
Nature
, vol.376
, pp. 49
-
-
-
10
-
-
0000500154
-
Biology and Problems of Health
-
Neyman, J. (ed) Univ. Calif. Press, Berkeley
-
Eden, M.: In: Neyman, J. (ed) Biology and Problems of Health, Proc. 4th Berkeley Sym. Math. Stat. Prob., volume 4, p. 223, Univ. Calif. Press, Berkeley, 1961
-
(1961)
Proc. 4th Berkeley Sym. Math. Stat. Prob.
, vol.4
, pp. 223
-
-
Eden, M.1
-
11
-
-
0003475470
-
-
Springer-Verlag, N. Y., chapter 11 and references therein
-
Murray, J.D.: Mathematical Biology, Springer-Verlag, N. Y., 1993, chapter 11 and references therein;
-
(1993)
Mathematical Biology
-
-
Murray, J.D.1
-
12
-
-
0003299218
-
Mathematical Aspects of Reacting and Diffusing Systems
-
Springer-Verlag, and references therein
-
Fife, P. C.: Mathematical Aspects of Reacting and Diffusing Systems, Lecture Notes in Biomathematics 28, Springer-Verlag, 1979 and references therein;
-
(1979)
Lecture Notes in Biomathematics
, vol.28
-
-
Fife, P.C.1
-
17
-
-
0001741961
-
-
paper number 9708071
-
Nelson, D.R., Shnerb, N., Nelson, D.R., Shnerb, N.: Phys. Rev. E 58, 1383 (1998); http://xxx.lanl.gov/list/cond-mat, paper number 9708071
-
(1998)
Phys. Rev. E
, vol.58
, pp. 1383
-
-
Nelson, D.R.1
Shnerb, N.2
Nelson, D.R.3
Shnerb, N.4
-
18
-
-
33845345183
-
-
Here we present results for the dynamics of continuous populations, while the process is actually discrete, with events such as reproduction A → 2A, death A → 0, and competition A + A → 0, where A denotes an individual bacterium. Throughout this paper, we neglect this effect and study a continuum ("mean field") approximation to this process. Discreteness, which will only be important very close to the extinction transition, can be modeled by inclusion of a multiplicative Langevin noise term, see, e.g. Privman, V.: Trends in Stat. Phys. 1 (1994);
-
(1994)
Trends in Stat. Phys.
, vol.1
-
-
Privman, V.1
-
20
-
-
33845303458
-
-
paper number 9607163
-
J. Cardy, http://xxx.lanl.gov/list/cond-mat, paper number 9607163;
-
-
-
Cardy, J.1
-
21
-
-
33845328349
-
-
Cardy, J., Uwe C Täuber, cond-mat/9609151
-
Cardy, J., Uwe C Täuber, cond-mat/9609151,
-
-
-
-
22
-
-
33845290542
-
-
D. Ben-Avraham, cond-mat/9805180, 9803281, 9802214
-
D. Ben-Avraham, cond-mat/9805180, 9803281, 9802214
-
-
-
-
23
-
-
33845335114
-
-
paper number 9806163
-
2/4D. In his case, all wave functions are extended. He observes an extinction transition at a critical value of the drift velocity
-
-
-
Ben-Avraham, D.1
-
24
-
-
33845297235
-
-
note
-
2(x′, t), where x′ is the coordinate in the laboratory frame where the growth medium is fixed. Upon transforming to new spatial coordinates x = x′ - vt, in which the mask remains fixed, and then making the replacement c(x + vt, t) → c(x, t), we obtain equation (1)
-
-
-
-
25
-
-
33845330189
-
-
private communication, A. Robinson, preprint
-
Bill Young, private communication, A. Robinson, 1999 (preprint)
-
(1999)
-
-
Young, B.1
-
28
-
-
0000600130
-
-
paper number 9705290
-
Hatano, N., Nelson, D.R.: Phys. Rev. B 56, 8651 (1997), http://xxx.lanl.gov/list/cond-mat, paper number 9705290
-
(1997)
Phys. Rev. B
, vol.56
, pp. 8651
-
-
Hatano, N.1
Nelson, D.R.2
-
29
-
-
0003421806
-
-
Springer, Berlin
-
The term "mobility edge" is taken from the physics of disordered semiconductors, where it refers to an energy dividing localized from extended electron eigenfunctions. See Shklovskii, B.I., Efros, A.L.: Electronic Properties of Doped Semiconductors, Springer, Berlin, 1984
-
(1984)
Electronic Properties of Doped Semiconductors
-
-
Shklovskii, B.I.1
Efros, A.L.2
-
31
-
-
33845308165
-
-
note
-
n(x) of (10) must decay sufficiently fast far away from the oasis. We check this condition at the end of the calculation; when it is violated, the eigenvalues become complex
-
-
-
-
33
-
-
0009037981
-
-
Riste, T., Sherrington, D., (eds) Kluwer, Boston
-
see also Nelson, D.R.: In: Riste, T., Sherrington, D., (eds) "Phase Transitions and Relaxation in Systems with Competing Energy Scales", Kluwer, Boston, 1993
-
(1993)
Phase Transitions and Relaxation in Systems with Competing Energy Scales
-
-
Nelson, D.R.1
-
35
-
-
33845333314
-
-
note
-
0 → W/2 22. See e.g. Jackson, J.D.: Classical Electrodynamics. John Wiley, New York, 1975
-
-
-
|