메뉴 건너뛰기




Volumn 12, Issue 6, 2000, Pages 1285-1292

Relationships between the a priori and a posteriori errors in nonlinear adaptive neural filters

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTICLE; ARTIFICIAL NEURAL NETWORK; FEEDBACK SYSTEM; LEARNING; NERVE CELL; NONLINEAR SYSTEM; PHYSIOLOGY;

EID: 0034200480     PISSN: 08997667     EISSN: None     Source Type: Journal    
DOI: 10.1162/089976600300015358     Document Type: Article
Times cited : (8)

References (15)
  • 7
    • 0032266710 scopus 로고    scopus 로고
    • A posteriori real time recurrent learning schemes for a recurrent neural network based non-linear predictor
    • Mandic, D. P., & Chambers, J. A. (1998). A posteriori real time recurrent learning schemes for a recurrent neural network based non-linear predictor. IEE Proceedings - Vision, Image and Signal Processing, 145(6), 365-370.
    • (1998) IEE Proceedings - Vision, Image and Signal Processing , vol.145 , Issue.6 , pp. 365-370
    • Mandic, D.P.1    Chambers, J.A.2
  • 9
    • 0000005113 scopus 로고    scopus 로고
    • Relationship between the slope of the activation function and the learning rate for the RNN
    • Mandic, D. P., & Chambers, J. A. (1999b). Relationship between the slope of the activation function and the learning rate for the RNN. Neural Computation, 11(5), 1069-1077.
    • (1999) Neural Computation , vol.11 , Issue.5 , pp. 1069-1077
    • Mandic, D.P.1    Chambers, J.A.2
  • 10
    • 0025399567 scopus 로고
    • Identification and control of dynamical systems using neural networks
    • Narendra, K. S., & Parthasarathy, K. (1990). Identification and control of dynamical systems using neural networks. IEEE Transactions on Neural Networks, 1(1), 4-27.
    • (1990) IEEE Transactions on Neural Networks , vol.1 , Issue.1 , pp. 4-27
    • Narendra, K.S.1    Parthasarathy, K.2
  • 11
    • 0026117466 scopus 로고
    • Gradient methods for the optimization of dynamical systems containing neural networks
    • Narendra, K. S., & Parthasarathy, K. (1991). Gradient methods for the optimization of dynamical systems containing neural networks. IEEE Transactions on Neural Networks, 2(2), 252-262.
    • (1991) IEEE Transactions on Neural Networks , vol.2 , Issue.2 , pp. 252-262
    • Narendra, K.S.1    Parthasarathy, K.2
  • 12
    • 0030584163 scopus 로고    scopus 로고
    • The interchangeability of learning rate and gain in backpropagation neural networks
    • Thimm, G., Moerland, P., & Fiesler, E. (1996). The interchangeability of learning rate and gain in backpropagation neural networks. Neural Computation, 8, 451-460.
    • (1996) Neural Computation , vol.8 , pp. 451-460
    • Thimm, G.1    Moerland, P.2    Fiesler, E.3
  • 14
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent neural networks
    • Williams, R., & Zipser, D. (1989). A learning algorithm for continually running fully recurrent neural networks. Neural Computation, 1, 270-280.
    • (1989) Neural Computation , vol.1 , pp. 270-280
    • Williams, R.1    Zipser, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.