메뉴 건너뛰기




Volumn 13, Issue 3, 2000, Pages 317-327

Local minima and plateaus in hierarchical structures of multilayer perceptrons

Author keywords

Error surface; Local minima; Multilayer perceptron; Plateau

Indexed keywords

COMPUTATIONAL GEOMETRY; ERROR ANALYSIS; LEARNING SYSTEMS; MATHEMATICAL MODELS;

EID: 0034018074     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0893-6080(00)00009-5     Document Type: Article
Times cited : (184)

References (14)
  • 1
    • 0000396062 scopus 로고    scopus 로고
    • Natural gradient works efficiently in learning
    • Amari S. Natural gradient works efficiently in learning. Neural Computation. 10:1998;251-276.
    • (1998) Neural Computation , vol.10 , pp. 251-276
    • Amari, S.1
  • 2
    • 0034201611 scopus 로고    scopus 로고
    • Adaptive method of realizing natural gradient learning for multilayer perceptrons
    • In press
    • Amari, S., Park, H., & Fukumizu, K. (2000). Adaptive method of realizing natural gradient learning for multilayer perceptrons. Neural Computation. In press.
    • (2000) Neural Computation
    • Amari, S.1    Park, H.2    Fukumizu, K.3
  • 3
    • 0001199897 scopus 로고
    • On the geometry of feedforward neural network error surfaces
    • Chen A.M., Lu H., Hecht-Nielsen R. On the geometry of feedforward neural network error surfaces. Neural Computation. 5:1993;910-927.
    • (1993) Neural Computation , vol.5 , pp. 910-927
    • Chen, A.M.1    Lu, H.2    Hecht-Nielsen, R.3
  • 4
    • 0030198493 scopus 로고    scopus 로고
    • A regularity condition of the information matrix of a multilayer perceptron network
    • Fukumizu K. A regularity condition of the information matrix of a multilayer perceptron network. Neural Networks. 9:(5):1996;871-879.
    • (1996) Neural Networks , vol.9 , Issue.5 , pp. 871-879
    • Fukumizu, K.1
  • 5
    • 0032100147 scopus 로고    scopus 로고
    • XOR has no local minima: A case study in neural network error surface analysis
    • Hamney L.G.C. XOR has no local minima: a case study in neural network error surface analysis. Neural Networks. 11:(4):1998;669-682.
    • (1998) Neural Networks , vol.11 , Issue.4 , pp. 669-682
    • Hamney, L.G.C.1
  • 6
    • 0000720909 scopus 로고
    • Functionally equivalent feedforward neural networks
    • Kůrkova V., Kainen P.C. Functionally equivalent feedforward neural networks. Neural Computation. 6:1994;543-558.
    • (1994) Neural Computation , vol.6 , pp. 543-558
    • Kůrkova, V.1    Kainen, P.C.2
  • 7
    • 0000294383 scopus 로고
    • Complete solution of the local minima in the XOR problem
    • Lisboa P.J.G., Perantonis S.J. Complete solution of the local minima in the XOR problem. Network. 2:1991;119-124.
    • (1991) Network , vol.2 , pp. 119-124
    • Lisboa, P.J.G.1    Perantonis, S.J.2
  • 8
    • 0000198852 scopus 로고    scopus 로고
    • Natural gradient descent for on-line learning
    • Rattray M., Saad D., Amari S. Natural gradient descent for on-line learning. Physical Review Letters. 81:1998;5461-5465.
    • (1998) Physical Review Letters , vol.81 , pp. 5461-5465
    • Rattray, M.1    Saad, D.2    Amari, S.3
  • 10
    • 4243234689 scopus 로고
    • On-line learning in soft committee machines
    • Saad D., Solla S. On-line learning in soft committee machines. Physical Review E. 52:1995;4225-4243.
    • (1995) Physical Review e , vol.52 , pp. 4225-4243
    • Saad, D.1    Solla, S.2
  • 11
    • 0032096333 scopus 로고    scopus 로고
    • The error surface of the 2-2-1 XOR network: The finite stationary points
    • Sprinkhuizen-Kuyper I.G., Boers E.J.W. The error surface of the 2-2-1 XOR network: the finite stationary points. Neural Networks. 11:(4):1998;683-690.
    • (1998) Neural Networks , vol.11 , Issue.4 , pp. 683-690
    • Sprinkhuizen-Kuyper, I.G.1    Boers, E.J.W.2
  • 13
    • 0026897370 scopus 로고
    • Uniqueness of the weights for minimal feedforward nets with a given input-output map
    • Sussmann H.J. Uniqueness of the weights for minimal feedforward nets with a given input-output map. Neural Networks. 5:1992;589-593.
    • (1992) Neural Networks , vol.5 , pp. 589-593
    • Sussmann, H.J.1
  • 14
    • 0032533046 scopus 로고    scopus 로고
    • Complexity issues in natural gradient descent method for training multilayer perceptrons
    • Yang H.H., Amari S. Complexity issues in natural gradient descent method for training multilayer perceptrons. Neural Computation. 10:1998;2137-2157.
    • (1998) Neural Computation , vol.10 , pp. 2137-2157
    • Yang, H.H.1    Amari, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.