메뉴 건너뛰기




Volumn 5, Issue 2, 1997, Pages 63-72

The Metric Structure of Weight Space

Author keywords

Canonical metric; Clustering in weight space; Fundamental domain; Symmetries; Weight space

Indexed keywords

COMPUTATIONAL METHODS; LEARNING ALGORITHMS; LEARNING SYSTEMS; MATHEMATICAL MODELS; VECTORS;

EID: 0031119069     PISSN: 13704621     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (10)

References (7)
  • 1
    • 2342523625 scopus 로고    scopus 로고
    • An analysis of the metric structure of the weight space of feedforward networks and its application to time series modeling and prediction
    • D Facto Publications: Brussels
    • A. Ossen and S.M. Rüger, "An analysis of the metric structure of the weight space of feedforward networks and its application to time series modeling and prediction", in Proceedings of the European Symposium on Artificial Intelligence (ESANN), pp. 315-322. D Facto Publications: Brussels, 1996.
    • (1996) Proceedings of the European Symposium on Artificial Intelligence (ESANN) , pp. 315-322
    • Ossen, A.1    Rüger, S.M.2
  • 2
    • 0001199897 scopus 로고
    • On the geometry of feedforward neural network error surfaces
    • A.M. Chen, H.-m. Lu and R. Hecht-Nielsen, "On the geometry of feedforward neural network error surfaces", Neural Computation, Vol. 5, No. 6, pp. 910-927, 1993.
    • (1993) Neural Computation , vol.5 , Issue.6 , pp. 910-927
    • Chen, A.M.1    Lu, H.-M.2    Hecht-Nielsen, R.3
  • 6
    • 0026897370 scopus 로고
    • Uniqueness of the weights for minimal feedforward nets with a given input-output map
    • H.J. Sussmann, "Uniqueness of the weights for minimal feedforward nets with a given input-output map", Neural Networks, Vol. 5, pp. 589-593, 1992.
    • (1992) Neural Networks , vol.5 , pp. 589-593
    • Sussmann, H.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.