메뉴 건너뛰기




Volumn 13, Issue 1, 2000, Pages 91-110

Partially pre-calculated weights for the backpropagation learning regime and high accuracy function mapping using continuous input RAM-based sigma-pi nets

Author keywords

Backpropagation; Higher order; n Tuple; Neural networks; RAM nets; Sigma pi; Training

Indexed keywords

BACKPROPAGATION; ERROR ANALYSIS; INTEGRATION; LEARNING SYSTEMS; MATHEMATICAL MODELS; RANDOM ACCESS STORAGE; VECTORS;

EID: 0033980299     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0893-6080(99)00102-1     Document Type: Article
Times cited : (11)

References (68)
  • 2
    • 0012921811 scopus 로고
    • Neural computing architectures: The design of brain-like machines
    • In I. Aleksander (Ed.), North Oxford Academic Publishers, ISBN 0-946536-47-3, re
    • Aleksander, I. (1989b). Neural computing architectures: the design of brain-like machines. In I. Aleksander (Ed.), North Oxford Academic Publishers, ISBN 0-946536-47-3, re: The logic of connectionist systems, chap. 8 (pp. 133-155) and A probabilistic logic neuron network for associative learning, chap. 9 (pp. 156-171) (see also chapters 1, 10 and 11).
    • (1989) The Logic of Connectionist Systems, Chap. 8 , pp. 133-155
    • Aleksander, I.1
  • 3
    • 0342786827 scopus 로고    scopus 로고
    • and (see also chapters 1, 10 and 11)
    • Aleksander, I. (1989b). Neural computing architectures: the design of brain-like machines. In I. Aleksander (Ed.), North Oxford Academic Publishers, ISBN 0-946536-47-3, re: The logic of connectionist systems, chap. 8 (pp. 133-155) and A probabilistic logic neuron network for associative learning, chap. 9 (pp. 156-171) (see also chapters 1, 10 and 11).
    • A Probabilistic Logic Neuron Network for Associative Learning, Chap. 9 , pp. 156-171
  • 4
    • 0342351941 scopus 로고
    • Weightless neural tools: Towards cognitive macrostructures
    • Rutgers University, New Jersey
    • Aleksander, I. (1990). Weightless neural tools: towards cognitive macrostructures. In: CAIP Neural Network Workshop, Rutgers University, New Jersey.
    • (1990) In: CAIP Neural Network Workshop
    • Aleksander, I.1
  • 6
    • 0021468626 scopus 로고
    • WISARD: A radical step forward in image recognition
    • July
    • Aleksander, I., Thomas, W.W., & Bowden, P.A. (1984). WISARD: a radical step forward in image recognition. Sensor Review, July, 120-124.
    • (1984) Sensor Review , pp. 120-124
    • Aleksander, I.1    Thomas, W.W.2    Bowden, P.A.3
  • 11
    • 84937653190 scopus 로고
    • Improved memory matrices for the n-tuple pattern recognition method
    • Bledsoe W.W., Blisson C.L. Improved memory matrices for the n-tuple pattern recognition method. IRE Transactions on Electronic Computers. ED11:1962;4141-4415.
    • (1962) IRE Transactions on Electronic Computers , vol.11 , pp. 4141-4415
    • Bledsoe, W.W.1    Blisson, C.L.2
  • 15
    • 0343221324 scopus 로고
    • Investigation into the effect of numerical resolution on the performance of back propagation
    • L. Personnaz, & G. Dreyfus. Paris: IDSET
    • Dedenham R.M., Gart S.C.J. Investigation into the effect of numerical resolution on the performance of back propagation. Personnaz L., Dreyfus G. Neural networks from models to applications. 1989;752-755 IDSET, Paris.
    • (1989) Neural Networks from Models to Applications , pp. 752-755
    • Dedenham, R.M.1    Gart, S.C.J.2
  • 16
    • 0006055728 scopus 로고
    • PhD Thesis, Department of Electrical Engineering, University of Hertfordshire, Hatfield Campus, College Lane, Hatfield, Herts, UK
    • Ferguson, A. (1995). Learning in RAM-based artificial neural networks. PhD Thesis, Department of Electrical Engineering, University of Hertfordshire, Hatfield Campus, College Lane, Hatfield, Herts, UK.
    • (1995) Learning in RAM-based Artificial Neural Networks
    • Ferguson, A.1
  • 18
    • 84945775663 scopus 로고
    • Traffic monitoring with WISARD and probilistic logic nodes
    • I. Aleksander. Brighton, UK: North-Holland
    • Goldstone J.S., Myers C.E. Traffic monitoring with WISARD and probilistic logic nodes. Aleksander I. Artificial neural networks 2. 1991;1669-1672 North-Holland, Brighton, UK.
    • (1991) Artificial Neural Networks 2 , pp. 1669-1672
    • Goldstone, J.S.1    Myers, C.E.2
  • 19
    • 0000857199 scopus 로고
    • On the equivalence and properties of noisy neural and probablistic RAM nets
    • Gorse D., Taylor J.G. On the equivalence and properties of noisy neural and probablistic RAM nets. Physics Letters A. 131:(6):1988;326-332.
    • (1988) Physics Letters a , vol.131 , Issue.6 , pp. 326-332
    • Gorse, D.1    Taylor, J.G.2
  • 20
    • 0012046489 scopus 로고
    • Reinforcement training strategies for probabilistic RAMs, theoretical aspects of neurocomputing
    • Gorse, D., & Taylor, J.G. (1990a). Reinforcement training strategies for probabilistic RAMs, theoretical aspects of neurocomputing. Symposium on Neural Networks and Neurocomputing (pp. 180-184).
    • (1990) Symposium on Neural Networks and Neurocomputing , pp. 180-184
    • Gorse, D.1    Taylor, J.G.2
  • 22
    • 0024996418 scopus 로고
    • A general model of stochastic neural processing
    • Gorse D., Taylor J.G. A general model of stochastic neural processing. Biological Cybernetics. 63:1990;299-306.
    • (1990) Biological Cybernetics , vol.63 , pp. 299-306
    • Gorse, D.1    Taylor, J.G.2
  • 23
    • 0025824911 scopus 로고
    • A continuous input RAM-based stochastic neural model
    • Gorse D., Taylor J. A continuous input RAM-based stochastic neural model. Neural Networks. 4:1991;657-665.
    • (1991) Neural Networks , vol.4 , pp. 657-665
    • Gorse, D.1    Taylor, J.2
  • 24
    • 0343657044 scopus 로고
    • Learning real-valued univariate time series: An application of a pulse-based reinforcement algorithm for learning continuous functions using pRAMs
    • D. Bisset. Canterbury, UK: University of Kent
    • Gorse D., Romano-Critchley D.A. Learning real-valued univariate time series: an application of a pulse-based reinforcement algorithm for learning continuous functions using pRAMs. Bisset D. WNNW'95, Weightless Neural Network Workshop 1995: Computing with Logical Neurons, 26-27 September. 1995;University of Kent, Canterbury, UK.
    • (1995) WNNW'95, Weightless Neural Network Workshop 1995: Computing with Logical Neurons, 26-27 September
    • Gorse, D.1    Romano-Critchley, D.A.2
  • 25
    • 25344458368 scopus 로고
    • Learning real-valued functions using hardware-implementable stochastic reinforcement algorithm
    • July 11-15, Oregon Convention Centre, Portland, Oregon, USA
    • Gorse, D., Taylor, J., & Clarkson, T. (1993). Learning real-valued functions using hardware-implementable stochastic reinforcement algorithm. WCNN-93-PORTLAND, World Congress on Neural Networks, July 11-15, Oregon Convention Centre, Portland, Oregon, USA, Vol. III (pp. III.301-III.304).
    • (1993) WCNN-93-PORTLAND, World Congress on Neural Networks , vol.3
    • Gorse, D.1    Taylor, J.2    Clarkson, T.3
  • 29
    • 0012083286 scopus 로고
    • A stochastic algorithm for learning real-valued functions via reinforcement feedback
    • 29 September, The Department of Computer and Information Sciences, The University of Massachusetts, USA
    • Gullapalli, V. (1988). A stochastic algorithm for learning real-valued functions via reinforcement feedback. COINS Technical Report Number: 88-91, 29 September, The Department of Computer and Information Sciences, The University of Massachusetts, USA.
    • (1988) COINS Technical Report Number: 88-91
    • Gullapalli, V.1
  • 30
    • 0025600638 scopus 로고
    • A stochastic reinforcement learning algorithm for learning real-valued functions
    • Gullapalli V. A stochastic reinforcement learning algorithm for learning real-valued functions. Neural Networks. 3:(6):1990;671-692.
    • (1990) Neural Networks , vol.3 , Issue.6 , pp. 671-692
    • Gullapalli, V.1
  • 31
    • 0006057505 scopus 로고
    • PhD Thesis, Department of Electrical Engineering, Brunel University, Middlesex, UK, available as: Technical Memo CN/R/144
    • Gurney, K. (1989). Learning in nets of structured hypercubes. PhD Thesis, Department of Electrical Engineering, Brunel University, Middlesex, UK, available as: Technical Memo CN/R/144.
    • (1989) Learning in Nets of Structured Hypercubes
    • Gurney, K.1
  • 32
    • 0026745305 scopus 로고
    • Training nets of hardware realisable sigma-pi units
    • Gurney K.N. Training nets of hardware realisable sigma-pi units. Neural Networks. 5:1992;289-303.
    • (1992) Neural Networks , vol.5 , pp. 289-303
    • Gurney, K.N.1
  • 33
    • 0000905885 scopus 로고
    • Weighted nodes and RAM-nets: A unified approach
    • Gurney K. Weighted nodes and RAM-nets: a unified approach. Journal of Intelligent Systems. 2:(1-4):1992;155-185.
    • (1992) Journal of Intelligent Systems , vol.2 , Issue.14 , pp. 155-185
    • Gurney, K.1
  • 34
    • 0027283196 scopus 로고
    • Training nets of stochastic units using system identification
    • Gurney K. Training nets of stochastic units using system identification. Neural Networks. 6:(1):1993;133-145.
    • (1993) Neural Networks , vol.6 , Issue.1 , pp. 133-145
    • Gurney, K.1
  • 36
    • 0028428365 scopus 로고
    • Application of the CMAC input encoding scheme in the N-tuple approximation net
    • Kolcz A., Allinson N.M. Application of the CMAC input encoding scheme in the N-tuple approximation net. IEE Proceedings of Computers and Digital Technology. 141:(3):1994;177-183.
    • (1994) IEE Proceedings of Computers and Digital Technology , vol.141 , Issue.3 , pp. 177-183
    • Kolcz, A.1    Allinson, N.M.2
  • 38
    • 0028590246 scopus 로고
    • How to make sigma-pi neural networks perform perfectly on regular training sets
    • Lenze B. How to make sigma-pi neural networks perform perfectly on regular training sets. Neural Networks. 7:(8):1994;1285-1294.
    • (1994) Neural Networks , vol.7 , Issue.8 , pp. 1285-1294
    • Lenze, B.1
  • 44
    • 0342786818 scopus 로고
    • MSc Full Custom Design Assignment Thesis, Spring Term, Assignment Thesis for Microelectronics Systems Design MSc, Brunel University, UK
    • Neville, R.S. (1990a). Am2909 microprogram address sequencer. MSc Full Custom Design Assignment Thesis, Spring Term, Assignment Thesis for Microelectronics Systems Design MSc, Brunel University, UK.
    • (1990) Am2909 Microprogram Address Sequencer
    • Neville, R.S.1
  • 49
  • 50
    • 0000561084 scopus 로고
    • Adaptive associative reward-penalty algorithms for sigma-pi networks
    • Neville R.S., Stonham T.J. Adaptive associative reward-penalty algorithms for sigma-pi networks. Neural, Parallel & Scientific Computations. 2:(2):1994;141-164.
    • (1994) Neural, Parallel & Scientific Computations , vol.2 , Issue.2 , pp. 141-164
    • Neville, R.S.1    Stonham, T.J.2
  • 51
    • 4244183477 scopus 로고
    • Unbounded reinforcement for the associative reward-penalty algorithm
    • San Diego, CA, USA
    • Neville, R., & Stonham, J. (1994b). Unbounded reinforcement for the associative reward-penalty algorithm. In: World Congress on Neural Networks, WCNN-94, San Diego, CA, USA (pp. III.637-III.640).
    • (1994) In: World Congress on Neural Networks, WCNN-94
    • Neville, R.1    Stonham, J.2
  • 52
    • 0012017638 scopus 로고
    • A comparison study of unbounded and real-valued reinforcement associative reward-penalty algorithms
    • Sorrento, Italy
    • Neville, R., & Stonham, J. (1994c). A comparison study of unbounded and real-valued reinforcement associative reward-penalty algorithms. In: International Conference on Artificial Neural Networks, ICANN-94, Sorrento, Italy (pp. 651-654).
    • (1994) In: International Conference on Artificial Neural Networks, ICANN-94 , pp. 651-654
    • Neville, R.1    Stonham, J.2
  • 53
    • 21844516556 scopus 로고
    • Generalisation in sigma-pi networks
    • Neville R.S., Stonham T.J. Generalisation in sigma-pi networks. Connection Science. 7:(1):1995;141-164.
    • (1995) Connection Science , vol.7 , Issue.1 , pp. 141-164
    • Neville, R.S.1    Stonham, T.J.2
  • 54
    • 0030176168 scopus 로고    scopus 로고
    • Adaptive critic for sigma-pi networks
    • Neville R.S., Stonham T.J. Adaptive critic for sigma-pi networks. Neural Networks. 9:(4):1996;603-625.
    • (1996) Neural Networks , vol.9 , Issue.4 , pp. 603-625
    • Neville, R.S.1    Stonham, T.J.2
  • 55
    • 4244058834 scopus 로고
    • Evaluation of training sigma-pi networks on massively parallel processor
    • Renaissance Hotel, Washington, DC, USA, 17-21 July
    • Neville, R.S., Glover, R.J., & Stonham, T.J. (1995a). Evaluation of training sigma-pi networks on massively parallel processor. In: World Congress on Neural Networks, WCNN'95, Renaissance Hotel, Washington, DC, USA, 17-21 July (pp II.484-II.487).
    • (1995) In: World Congress on Neural Networks, WCNN'95
    • Neville, R.S.1    Glover, R.J.2    Stonham, T.J.3
  • 56
    • 0029493154 scopus 로고
    • Evaluation of training & mapping sigma-pi networks to a massively parallel processor
    • Perth, Western Australia, 27 November-1 December
    • Neville, R., Glover, R.J., & Stonham, J. (1995b). Evaluation of training & mapping sigma-pi networks to a massively parallel processor. In: IEEE ICNN'95, International Conference on Neural Networks, Perth, Western Australia, 27 November-1 December (pp. 1042-1047).
    • (1995) In: IEEE ICNN'95, International Conference on Neural Networks , pp. 1042-1047
    • Neville, R.1    Glover, R.J.2    Stonham, J.3
  • 57
    • 0012083288 scopus 로고
    • Department of Electrical Engineering, Brunel University, UK. Registered as Technical Memorandum N/R/150 in the Department of Electrical Engineering, Brunel University, Copyright October
    • Neville, R., Glover, R.J., & Stonham, J. (1995c). Mapping Neural Networks to the Associative String Processor, Department of Electrical Engineering, Brunel University, UK. Registered as Technical Memorandum N/R/150 in the Department of Electrical Engineering, Brunel University, Copyright October.
    • (1995) Mapping Neural Networks to the Associative String Processor
    • Neville, R.1    Glover, R.J.2    Stonham, J.3
  • 58
    • 0342351930 scopus 로고
    • Mapping sigma-pi networks and the associative reward-penalty training regime to a massively parallel processor
    • Submitted for publication
    • Neville, R., Glover, R.J., & Stonham, J. (1995d). Mapping sigma-pi networks and the associative reward-penalty training regime to a massively parallel processor. IEEE Transactions on Neural Networks. Submitted for publication.
    • (1995) IEEE Transactions on Neural Networks
    • Neville, R.1    Glover, R.J.2    Stonham, J.3
  • 59
    • 0006098208 scopus 로고
    • Mapping sigma-pi networks and the associative reward-penalty training regime to the associative string processor
    • Submitted for publication
    • Neville, R., Glover, R.J., & Stonham, J. (1995e). Mapping sigma-pi networks and the associative reward-penalty training regime to the associative string processor. IEEE Transactions on Massively Parallel Processors/Associative Processors (Special Issue). Submitted for publication.
    • (1995) IEEE Transactions on Massively Parallel Processors/Associative Processors , Issue.SPECIAL ISSUE
    • Neville, R.1    Glover, R.J.2    Stonham, J.3
  • 61
    • 0040921652 scopus 로고
    • The elements of intelligence
    • Werbos P.J. The elements of intelligence. Cybernetica. 3:1968;000.
    • (1968) Cybernetica , vol.3 , pp. 000
    • Werbos, P.J.1
  • 66
    • 0003400983 scopus 로고
    • Principles of VLSI design: A systems perspective
    • L. Conway, & C. Seitz. Reading, MA: Addison-Wesley
    • Weste N.H.E., Eshraghian K. Principles of VLSI design: a systems perspective. Conway L., Seitz C. VLSI Systems Series. 1988;Addison-Wesley, Reading, MA.
    • (1988) VLSI Systems Series
    • Weste, N.H.E.1    Eshraghian, K.2
  • 68
    • 0026895589 scopus 로고
    • A quantitative analysis of the behaviours of the PLN network
    • Zhang B., Zhang L., Zhang H. A quantitative analysis of the behaviours of the PLN network. Neural Networks. 5:(4):1992;639-644.
    • (1992) Neural Networks , vol.5 , Issue.4 , pp. 639-644
    • Zhang, B.1    Zhang, L.2    Zhang, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.