메뉴 건너뛰기




Volumn 9, Issue 4, 1996, Pages 603-625

Adaptive critic for sigma-pi networks

Author keywords

Adaptive critic; Associative reward penalty; Dynamic programming; Multi cube; Reinforcement; Sigma pi

Indexed keywords

BACKPROPAGATION; COMPUTER SIMULATION; DYNAMIC PROGRAMMING; MATHEMATICAL MODELS;

EID: 0030176168     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/0893-6080(96)00015-9     Document Type: Article
Times cited : (11)

References (52)
  • 2
    • 0001803084 scopus 로고
    • The logic of connectionist systems, a probabilistic logic neuron network for associative learning)
    • Chapter 8, Chapter 9 (see also Chapters 1, 10 and 11). I. Aleksander (Ed.), North Oxford Academic Publishers Ltd.
    • Aleksander, I. (1989b). The logic of connectionist systems (Chapter 8 pp. 135-155), a probabilistic logic neuron network for associative learning (Chapter 9, pp. 156-171) (see also Chapters 1, 10 and 11). In: I. Aleksander (Ed.), Neural computing architectures: the design of brain-like machines, North Oxford Academic Publishers Ltd.
    • (1989) Neural Computing Architectures: The Design of Brain-like Machines , pp. 135-155
    • Aleksander, I.1
  • 3
    • 0342351941 scopus 로고
    • Weightless neural tools: Towards cognitive macrostructures
    • New Jersey: Rutgers University
    • Aleksander, I. (1990). Weightless neural tools: towards cognitive macrostructures. In: CAIP Neural Network Workshop. New Jersey: Rutgers University.
    • (1990) CAIP Neural Network Workshop
    • Aleksander, I.1
  • 8
    • 84937653190 scopus 로고
    • Improved memory matrices for the n-tuple pattern recognition method
    • Bledsoe, W. W., & Blisson, C. L. (1962). Improved memory matrices for the n-tuple pattern recognition method. IRE Transactions on Electronic Computers, ED11, 141-415.
    • (1962) IRE Transactions on Electronic Computers , vol.ED11 , pp. 141-415
    • Bledsoe, W.W.1    Blisson, C.L.2
  • 12
    • 0025824911 scopus 로고
    • A continuous input RAM-based stochastic neural model
    • Gorse, D., & Taylor, J. (1991). A continuous input RAM-based stochastic neural model. Neural Networks, 4, 657-665.
    • (1991) Neural Networks , vol.4 , pp. 657-665
    • Gorse, D.1    Taylor, J.2
  • 13
    • 0012083286 scopus 로고
    • A stochastic algorithm for learning real-valued functions via reinforcement feedback
    • September 29th. The Department of Computer and Information Sciences (COINS), The University of Massachusetts
    • Gullapalli, V. (1988). A stochastic algorithm for learning real-valued functions via reinforcement feedback. COINS Technical Report Number: 88-91, September 29th. The Department of Computer and Information Sciences (COINS), The University of Massachusetts.
    • (1988) COINS Technical Report Number 88-91 , vol.88-91
    • Gullapalli, V.1
  • 14
    • 0006057505 scopus 로고
    • PhD thesis, Department of Electrical Engineering, Brunel University, Manchester (available as: Technical Memo CN/R/144)
    • Gurney, K. (1989). Learning in nets of structure hypercubes. PhD thesis, Department of Electrical Engineering, Brunel University, Manchester (available as: Technical Memo CN/R/144).
    • (1989) Learning in Nets of Structure Hypercubes
    • Gurney, K.1
  • 15
    • 0026745305 scopus 로고
    • Training nets of hardware realisable sigma-pi units
    • Gurney, K. (1992a). Training nets of hardware realisable sigma-pi units. Neural Networks, 5, 289-303.
    • (1992) Neural Networks , vol.5 , pp. 289-303
    • Gurney, K.1
  • 16
    • 0000905885 scopus 로고
    • Weighted nodes and RAM-nets: A unified approach
    • Gurney, K. (1992b). Weighted nodes and RAM-nets: A unified approach. Journal of Intelligent Systems, 2(1-4), 155-185.
    • (1992) Journal of Intelligent Systems , vol.2 , Issue.1-4 , pp. 155-185
    • Gurney, K.1
  • 17
    • 0027283196 scopus 로고
    • Training nets of stochastic units using system identification
    • F3 >
    • Gurney, K. (1993). Training nets of stochastic units using system identification. Neural Networks, F3 > 6(1), 133-145.
    • (1993) Neural Networks , vol.6 , Issue.1 , pp. 133-145
    • Gurney, K.1
  • 18
    • 0004243089 scopus 로고
    • Boltzmann machines: Constraint satisfaction networks that learn
    • Carnegie Mellon University, Pittsburgh, PA
    • Hinton, G., Sejnowski, T., & Ackley, D. (1984). Boltzmann machines: constraint satisfaction networks that learn. Technical Report CMU-CS-84-119, Carnegie Mellon University, Pittsburgh, PA.
    • (1984) Technical Report CMU-CS-84-119
    • Hinton, G.1    Sejnowski, T.2    Ackley, D.3
  • 19
    • 0001578518 scopus 로고
    • A learning algorithm for Boltzmann machines
    • Hinton, G., Ackley, D., & Sejnowski, T. (1985). A learning algorithm for Boltzmann machines. Cognitive Science, 9, 147-169.
    • (1985) Cognitive Science , vol.9 , pp. 147-169
    • Hinton, G.1    Ackley, D.2    Sejnowski, T.3
  • 23
    • 84937350040 scopus 로고
    • Steps towards artificial intelligence
    • Minsky, M. (1961). Steps towards artificial intelligence. IRE, 49, 8-30.
    • (1961) IRE , vol.49 , pp. 8-30
    • Minsky, M.1
  • 31
    • 4244136291 scopus 로고
    • Adaptive critic for probabilistic logic nets
    • Portland, Oregon
    • Neville, R., & Stonham, T. (1993). Adaptive critic for probabilistic logic nets. World Congress on Neural Networks (pp. III.389-III.392), Portland, Oregon.
    • (1993) World Congress on Neural Networks
    • Neville, R.1    Stonham, T.2
  • 33
    • 4244183477 scopus 로고
    • Unbounded reinforcement for the associative reward-penalty algorithm
    • WCNN-94 San Diego, CA
    • Neville, R., & Stonham, T. (1994b). Unbounded reinforcement for the associative reward-penalty algorithm. The World Congress on Neural Networks, WCNN-94 (pp. III.637-III.640), San Diego, CA.
    • (1994) The World Congress on Neural Networks
    • Neville, R.1    Stonham, T.2
  • 34
    • 0012017638 scopus 로고
    • A comparison study of unbounded and real-valued reinforcement associative reward-penalty algorithms
    • ICANN-94 Sorrento, Italy
    • Neville, R., & Stonham, T. (1994c). A comparison study of unbounded and real-valued reinforcement associative reward-penalty algorithms. The International Conference on Artificial Neural Networks, ICANN-94 (pp. 651-654), Sorrento, Italy.
    • (1994) The International Conference on Artificial Neural Networks , pp. 651-654
    • Neville, R.1    Stonham, T.2
  • 36
    • 4244058834 scopus 로고
    • Evaluation of training sigma-pi networks on a massively parallel processor
    • World Congress on Neural Networks, WCNN-95, Washington, DC 1995, Renaissance Hotel Washington, DC July 17-21, ISBN 0-8058-2125-2
    • Neville, R., Glover, R. J., & Stonham, J. (1995a). Evaluation of training sigma-pi networks on a massively parallel processor. World Congress on Neural Networks, WCNN-95, Washington, DC (pp. II-484-II-487). 1995, International Nueral Network Society Annual Meeting, Renaissance Hotel Washington, DC July 17-21, Volume II, ISBN 0-8058-2125-2.
    • (1995) International Nueral Network Society Annual Meeting , vol.2
    • Neville, R.1    Glover, R.J.2    Stonham, J.3
  • 37
    • 0029493154 scopus 로고
    • Evaluation of training & mapping sigma-pi networks to a massively parallel processor
    • Perth, Western Australia, 27 November-1 December
    • Neville, R., Glover, R. J., & Stonham, J. (1995b). Evaluation of training & mapping sigma-pi networks to a massively parallel processor. IEEE ICNN'95, International Conference on Neural Networks, Perth, Western Australia, 27 November-1 December.
    • (1995) IEEE ICNN'95, International Conference on Neural Networks
    • Neville, R.1    Glover, R.J.2    Stonham, J.3
  • 38
    • 0012083288 scopus 로고
    • Department of Electrical Engineering, Brunel University, England, Registered as Technical Memorandum N/R/150 in the Department of Electrical Engineering, Brunel University, Copyright © October 1995
    • Neville, R., Glover, R. J., & Stonham, J. (1995c). Mapping neural networks to the associative string processor. Department of Electrical Engineering, Brunel University, England, Registered as Technical Memorandum N/R/150 in the Department of Electrical Engineering, Brunel University, Copyright © October 1995.
    • (1995) Mapping Neural Networks to the Associative String Processor
    • Neville, R.1    Glover, R.J.2    Stonham, J.3
  • 43
    • 0025229247 scopus 로고
    • Consistency of HDP applied to a simple reinforcement learning problem
    • Werbos, P. (1990). Consistency of HDP applied to a simple reinforcement learning problem. Neural Networks, 3, 179-189.
    • (1990) Neural Networks , vol.3 , pp. 179-189
    • Werbos, P.1
  • 44
    • 0002031779 scopus 로고
    • Approximate dynamic programming for real-time control and neural modelling
    • New York: Van Nostrand
    • Werbos, P. (1992a). Approximate dynamic programming for real-time control and neural modelling. In Handbook of intelligent control: neural, fuzzy and adaptive approaches (pp. 493-525), New York: Van Nostrand.
    • (1992) Handbook of Intelligent Control: Neural, Fuzzy and Adaptive Approaches , pp. 493-525
    • Werbos, P.1
  • 46
  • 49
    • 0012076854 scopus 로고
    • Reinforcement learning in connectionist networks: A mathematical analysis
    • Cognitive Science, University of California, San Diego, CA
    • Williams, R. (1986). Reinforcement learning in connectionist networks: a mathematical analysis. Technical Report ICS Report 8605, Cognitive Science, University of California, San Diego, CA.
    • (1986) Technical Report ICS Report 8605 , vol.8605
    • Williams, R.1
  • 50
    • 0023572535 scopus 로고
    • A class of gradient-estimation algorithms for reinforcement learning in neural networks
    • San Diego, CA
    • Williams, R. (1987a). A class of gradient-estimation algorithms for reinforcement learning in neural networks. Proceedings of the International Conference on Neural Networks (Vol. II; pp. II.601-II.608), San Diego, CA.
    • (1987) Proceedings of the International Conference on Neural Networks , vol.2
    • Williams, R.1
  • 51
    • 0012018048 scopus 로고
    • Reinforcement-learning connectionist systems
    • College of Computer Science, Northeastern University, Boston, MA
    • Williams, R. (1987b). Reinforcement-learning connectionist systems. Technical Report NU-CCS-87-3, College of Computer Science, Northeastern University, Boston, MA.
    • (1987) Technical Report NU-CCS-87-3
    • Williams, R.1
  • 52
    • 0017524329 scopus 로고
    • An adaptive optimal controller for discrete-time Markov environments
    • Witten, I. H (1977). An adaptive optimal controller for discrete-time Markov environments. Inform. Contr., 34, 286-295.
    • (1977) Inform. Contr. , vol.34 , pp. 286-295
    • Witten, I.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.