-
2
-
-
0023437775
-
The role of bending in the finite element analysis of thin shells
-
Morley L.S.D., Mould M.P. The role of bending in the finite element analysis of thin shells. J. Finite Elements Anal. Des. 3:1987;213-240.
-
(1987)
J. Finite Elements Anal. des
, vol.3
, pp. 213-240
-
-
Morley, L.S.D.1
Mould, M.P.2
-
3
-
-
0032598825
-
A simple finite element model for the geometrically nonlinear analysis of thin shells
-
Providas E, Kattis M.A. A simple finite element model for the geometrically nonlinear analysis of thin shells. Computational Mechanics J. 1999;24:127-37.
-
(1999)
Computational Mechanics J.
, vol.24
, pp. 127-137
-
-
Providas, E.1
Kattis, M.A.2
-
4
-
-
0027579312
-
Further development of a three-node triangular shell element
-
Cook R.D. Further development of a three-node triangular shell element. Int. J. Num. Meth. Engrg. 36:1993;1413-1425.
-
(1993)
Int. J. Num. Meth. Engrg
, vol.36
, pp. 1413-1425
-
-
Cook, R.D.1
-
7
-
-
0021309264
-
A compatible triangular element including vertex rotations for plane elasticity analysis
-
Allman D.J. A compatible triangular element including vertex rotations for plane elasticity analysis. Comp. Struct. 19:1984;1-8.
-
(1984)
Comp. Struct
, vol.19
, pp. 1-8
-
-
Allman, D.J.1
-
8
-
-
37949039975
-
The constant strain triangle with drilling rotations: A simple prospect for shell analysis
-
Whiteman J.R. London: Academic Press
-
Allman D.J. The constant strain triangle with drilling rotations: a simple prospect for shell analysis. Whiteman J.R. The mathematics of finite elements and applications, MAFELAP 1987. vol. VI:1988;233-240 Academic Press, London.
-
(1988)
The Mathematics of Finite Elements and Applications, MAFELAP 1987
, vol.6
, pp. 233-240
-
-
Allman, D.J.1
-
9
-
-
0024130826
-
Evaluation of the constant strain triangle with drilling rotations
-
Allman D.J. Evaluation of the constant strain triangle with drilling rotations. Int. J. Num. Meth. Engrg. 26:1988;2645-2655.
-
(1988)
Int. J. Num. Meth. Engrg
, vol.26
, pp. 2645-2655
-
-
Allman, D.J.1
-
10
-
-
0027579193
-
Variational validation of a membrane finite element with drilling rotations
-
Allman D.J. Variational validation of a membrane finite element with drilling rotations. Commun. Num. Meth. Engrg. 9:1993;345-351.
-
(1993)
Commun. Num. Meth. Engrg
, vol.9
, pp. 345-351
-
-
Allman, D.J.1
-
11
-
-
0028197822
-
A basic flat facet finite element for the analysis of general shells
-
Allman D.J. A basic flat facet finite element for the analysis of general shells. Int. J. Num. Meth. Engrg. 37:1994;19-35.
-
(1994)
Int. J. Num. Meth. Engrg
, vol.37
, pp. 19-35
-
-
Allman, D.J.1
-
12
-
-
0022100808
-
A triangular membrane element with rotational degrees-of-freedom
-
Bergan P.G., Felippa C.A. A triangular membrane element with rotational degrees-of-freedom. Comp. Meth. Appl. Mech. Engrg. 50:1985;25-69.
-
(1985)
Comp. Meth. Appl. Mech. Engrg
, vol.50
, pp. 25-69
-
-
Bergan, P.G.1
Felippa, C.A.2
-
14
-
-
0026966830
-
Membrane triangles with corner drilling freedoms. Part II: The ANDES element
-
Felippa C.A., Militello C. Membrane triangles with corner drilling freedoms. Part II: The ANDES element. J. Finite Elements Anal. Des. 12:1992;189-201.
-
(1992)
J. Finite Elements Anal. des
, vol.12
, pp. 189-201
-
-
Felippa, C.A.1
Militello, C.2
-
15
-
-
0026966101
-
Membrane triangles with corner drilling freedoms. Part III: Implementation and performance evaluation
-
Felippa C.A., Alexander S. Membrane triangles with corner drilling freedoms. Part III: Implementation and performance evaluation. J. Finite Elements Anal. Des. 12:1992;203-239.
-
(1992)
J. Finite Elements Anal. des
, vol.12
, pp. 203-239
-
-
Felippa, C.A.1
Alexander, S.2
-
16
-
-
0023399938
-
A plane hybrid element with rotational D.O.F. and adjustable stiffness
-
Cook R.D. A plane hybrid element with rotational D.O.F. and adjustable stiffness. Int. J. Num. Meth. Engrg. 24:1987;1499-1508.
-
(1987)
Int. J. Num. Meth. Engrg
, vol.24
, pp. 1499-1508
-
-
Cook, R.D.1
-
18
-
-
0026678736
-
Stabilized rapidly convergent 18-degrees-of-freedom flat shell triangular element
-
Fish J., Belytschko T. Stabilized rapidly convergent 18-degrees-of-freedom flat shell triangular element. Int. J. Numer. Methods Eng. 33:1992;149-162.
-
(1992)
Int. J. Numer. Methods Eng
, vol.33
, pp. 149-162
-
-
Fish, J.1
Belytschko, T.2
-
20
-
-
0030246095
-
A new one-point quadrature, quadrilateral shell element with drilling degrees-of-freedom
-
Zhu Y., Zacharia T. A new one-point quadrature, quadrilateral shell element with drilling degrees-of-freedom. Comp. Meth. Appl. Mech. Engrg. 136:1996;165-203.
-
(1996)
Comp. Meth. Appl. Mech. Engrg
, vol.136
, pp. 165-203
-
-
Zhu, Y.1
Zacharia, T.2
-
21
-
-
0031141702
-
A hybrid stress quadrilateral shell element with full rotational D.O.F.S
-
Sze K.Y., Sim Y.S., Soh A.K. A hybrid stress quadrilateral shell element with full rotational D.O.F.S. Int. J. Numer. Methods Eng. 40:1997;1785-1800.
-
(1997)
Int. J. Numer. Methods Eng
, vol.40
, pp. 1785-1800
-
-
Sze, K.Y.1
Sim, Y.S.2
Soh, A.K.3
-
22
-
-
0028375617
-
Four-node 'flat'shell element: Drilling degrees-of-freedom, membrane-bending coupling, warped geometry, and behavior
-
Cook R.D. Four-node 'flat'shell element: drilling degrees-of-freedom, membrane-bending coupling, warped geometry, and behavior. Comp. Struct. 50:1994;549-555.
-
(1994)
Comp. Struct
, vol.50
, pp. 549-555
-
-
Cook, R.D.1
-
25
-
-
0003228428
-
An improved first approximation theory for thin shells
-
Sanders JL. An improved first approximation theory for thin shells. NASA Report 24, 1959.
-
NASA Report
, vol.24
, pp. 1959
-
-
Sanders, J.L.1
-
26
-
-
0001839710
-
A consistent first approximation in the general theory of thin elastic shells
-
W.T. Koiter. Amsterdam: North-Holland
-
Koiter W.T. A consistent first approximation in the general theory of thin elastic shells. Koiter W.T. Proc. IUTAM Symp. on The Theory of Thin Elastic Shells. 1960;12-33 North-Holland, Amsterdam.
-
(1960)
Proc. IUTAM Symp. on the Theory of Thin Elastic Shells
, pp. 12-33
-
-
Koiter, W.T.1
-
27
-
-
0342913137
-
Polynomial comparison solutions in the Sanders-Koiter theory of circular cylindrical shells
-
D.G. Ashwell, & R.H. allagher. New York: Wiley
-
Morley L.S.D., Merrifield B.C. Polynomial comparison solutions in the Sanders-Koiter theory of circular cylindrical shells. Ashwell D.G., allagher R.H. Finite elements for thin shells and curved members. 1976;41-53 Wiley, New York.
-
(1976)
Finite Elements for Thin Shells and Curved Members
, pp. 41-53
-
-
Morley, L.S.D.1
Merrifield, B.C.2
-
29
-
-
0040786129
-
Comparison solutions for assessment of inextensional bending in shells of quadratic and cubic polynomial representation
-
Mould M.P. Comparison solutions for assessment of inextensional bending in shells of quadratic and cubic polynomial representation. Comp. Mech. 4:1989;31-45.
-
(1989)
Comp. Mech
, vol.4
, pp. 31-45
-
-
Mould, M.P.1
-
30
-
-
0022047205
-
A proposed standard set of problems to test finite element accuracy
-
MacNeal R.H., Harder R.L. A proposed standard set of problems to test finite element accuracy. J. Finite Elements in Anal Des. 1:1985;3-20.
-
(1985)
J. Finite Elements in Anal des
, vol.1
, pp. 3-20
-
-
MacNeal, R.H.1
Harder, R.L.2
-
31
-
-
0019574221
-
Derivation of element stiffness matrices by assumed strain distributions
-
MacNeal R.H. Derivation of element stiffness matrices by assumed strain distributions. Nuclear Engineering and Design. 70:1982;3-12.
-
(1982)
Nuclear Engineering and Design
, vol.70
, pp. 3-12
-
-
MacNeal, R.H.1
|