-
1
-
-
0032304090
-
-
Supported nickel clusters that are smaller than 2 nm in diameter have been prepared with perfect size monodispersity (see for example: U. Heiz, Appl. Phys. A: Mater. Sci. Proc. 1998, 67, 621; U. Heiz, F. Vanolli, A. Sanchez, W. D. Schneider, J. Am. Chem. Soc. 1998, 120, 1668). The synthesis of these particles in the gas phase involves laser evaporation, mass selection, and subsequent deposition at low kinetic energies onto single crystal MgO surfaces. This elegant technique can not be employed to prepare "large" nickel nanoparticles in the 20-500 nm diameter range of interest in this study.
-
(1998)
Appl. Phys. A: Mater. Sci. Proc.
, vol.67
, pp. 621
-
-
Heiz, U.1
-
2
-
-
0032560970
-
-
The synthesis of these particles in the gas phase involves laser evaporation, mass selection, and subsequent deposition at low kinetic energies onto single crystal MgO surfaces. This elegant technique can not be employed to prepare "large" nickel nanoparticles in the 20-500 nm diameter range of interest in this study
-
Supported nickel clusters that are smaller than 2 nm in diameter have been prepared with perfect size monodispersity (see for example: U. Heiz, Appl. Phys. A: Mater. Sci. Proc. 1998, 67, 621; U. Heiz, F. Vanolli, A. Sanchez, W. D. Schneider, J. Am. Chem. Soc. 1998, 120, 1668). The synthesis of these particles in the gas phase involves laser evaporation, mass selection, and subsequent deposition at low kinetic energies onto single crystal MgO surfaces. This elegant technique can not be employed to prepare "large" nickel nanoparticles in the 20-500 nm diameter range of interest in this study.
-
(1998)
J. Am. Chem. Soc.
, vol.120
, pp. 1668
-
-
Heiz, U.1
Vanolli, F.2
Sanchez, A.3
Schneider, W.D.4
-
3
-
-
85012820453
-
-
Two solution phase methods for synthesizing nickel nanoparticles having a similar degree of size monodispersity are the "redox-controlled" and "electrochemical" methods of Reetz and co-workers (see for example: M. T. Reetz, W. Helbig, J. Am. Chem. Soc. 1994, 116, 7401. J. A. Becker, R. Schafer, R. Festag, W. Ruland, J. H. Wendorff, J. Pebler, S. A. Quaiser, W. Helbig, M. T. Reetz, J. Chem. Phys. 1995, 103, 2520. M. T. Reetz, M. Maase, Adv. Mater. 1999, 11, 773), and the so- called "polyol process" of Fiével and co-workers (described in: F. Fiévet, J.-P. Lagier, M. Fietglarz, MRS Bull. 1989, 14, 29. P. Toneguzzo, G. Viau, O. Acher, F. Fievet-Vincent, F. Fiévet, Adv. Mater. 1998, 10, 1032).
-
(1994)
J. Am. Chem. Soc.
, vol.116
, pp. 7401
-
-
Reetz, M.T.1
Helbig, W.2
-
4
-
-
36449006180
-
-
Two solution phase methods for synthesizing nickel nanoparticles having a similar degree of size monodispersity are the "redox-controlled" and "electrochemical" methods of Reetz and co-workers (see for example: M. T. Reetz, W. Helbig, J. Am. Chem. Soc. 1994, 116, 7401. J. A. Becker, R. Schafer, R. Festag, W. Ruland, J. H. Wendorff, J. Pebler, S. A. Quaiser, W. Helbig, M. T. Reetz, J. Chem. Phys. 1995, 103, 2520. M. T. Reetz, M. Maase, Adv. Mater. 1999, 11, 773), and the so- called "polyol process" of Fiével and co-workers (described in: F. Fiévet, J.-P. Lagier, M. Fietglarz, MRS Bull. 1989, 14, 29. P. Toneguzzo, G. Viau, O. Acher, F. Fievet-Vincent, F. Fiévet, Adv. Mater. 1998, 10, 1032).
-
(1995)
J. Chem. Phys.
, vol.103
, pp. 2520
-
-
Becker, J.A.1
Schafer, R.2
Festag, R.3
Ruland, W.4
Wendorff, J.H.5
Pebler, J.6
Quaiser, S.A.7
Helbig, W.8
Reetz, M.T.9
-
5
-
-
0000104516
-
-
and the so-called "polyol process" of Fiével and co-workers
-
Two solution phase methods for synthesizing nickel nanoparticles having a similar degree of size monodispersity are the "redox-controlled" and "electrochemical" methods of Reetz and co-workers (see for example: M. T. Reetz, W. Helbig, J. Am. Chem. Soc. 1994, 116, 7401. J. A. Becker, R. Schafer, R. Festag, W. Ruland, J. H. Wendorff, J. Pebler, S. A. Quaiser, W. Helbig, M. T. Reetz, J. Chem. Phys. 1995, 103, 2520. M. T. Reetz, M. Maase, Adv. Mater. 1999, 11, 773), and the so-called "polyol process" of Fiével and co-workers (described in: F. Fiévet, J.-P. Lagier, M. Fietglarz, MRS Bull. 1989, 14, 29. P. Toneguzzo, G. Viau, O. Acher, F. Fievet-Vincent, F. Fiévet, Adv. Mater. 1998, 10, 1032).
-
(1999)
Adv. Mater.
, vol.11
, pp. 773
-
-
Reetz, M.T.1
Maase, M.2
-
6
-
-
4143142583
-
-
Two solution phase methods for synthesizing nickel nanoparticles having a similar degree of size monodispersity are the "redox-controlled" and "electrochemical" methods of Reetz and co-workers (see for example: M. T. Reetz, W. Helbig, J. Am. Chem. Soc. 1994, 116, 7401. J. A. Becker, R. Schafer, R. Festag, W. Ruland, J. H. Wendorff, J. Pebler, S. A. Quaiser, W. Helbig, M. T. Reetz, J. Chem. Phys. 1995, 103, 2520. M. T. Reetz, M. Maase, Adv. Mater. 1999, 11, 773), and the so- called "polyol process" of Fiével and co-workers (described in: F. Fiévet, J.-P. Lagier, M. Fietglarz, MRS Bull. 1989, 14, 29. P. Toneguzzo, G. Viau, O. Acher, F. Fievet-Vincent, F. Fiévet, Adv. Mater. 1998, 10, 1032).
-
(1989)
MRS Bull.
, vol.14
, pp. 29
-
-
Fiévet, F.1
Lagier, J.-P.2
Fietglarz, M.3
-
7
-
-
0032164463
-
-
Two solution phase methods for synthesizing nickel nanoparticles having a similar degree of size monodispersity are the "redox-controlled" and "electrochemical" methods of Reetz and co-workers (see for example: M. T. Reetz, W. Helbig, J. Am. Chem. Soc. 1994, 116, 7401. J. A. Becker, R. Schafer, R. Festag, W. Ruland, J. H. Wendorff, J. Pebler, S. A. Quaiser, W. Helbig, M. T. Reetz, J. Chem. Phys. 1995, 103, 2520. M. T. Reetz, M. Maase, Adv. Mater. 1999, 11, 773), and the so- called "polyol process" of Fiével and co-workers (described in: F. Fiévet, J.-P. Lagier, M. Fietglarz, MRS Bull. 1989, 14, 29. P. Toneguzzo, G. Viau, O. Acher, F. Fievet-Vincent, F. Fiévet, Adv. Mater. 1998, 10, 1032).
-
(1998)
Adv. Mater.
, vol.10
, pp. 1032
-
-
Toneguzzo, P.1
Viau, G.2
Acher, O.3
Fievet-Vincent, F.4
Fiévet, F.5
-
8
-
-
0000018081
-
-
F., Gu, S. Hope, M. Tselepi, J. A. C. Bland, Phys. Rev. B 1999, 60, 4092.
-
(1999)
Phys. Rev. B
, vol.60
, pp. 4092
-
-
Gu, F.1
Hope, S.2
Tselepi, M.3
Bland, J.A.C.4
-
9
-
-
16144369207
-
-
Y. D. Yao, Y. Y. Chen, M. F. Tai, D. H. Wang, H. M. Lin, Mater. Sci. Eng. 1996, A217/218, 281.
-
(1996)
Mater. Sci. Eng.
, vol.218 A217
, pp. 281
-
-
Yao, Y.D.1
Chen, Y.Y.2
Tai, M.F.3
Wang, D.H.4
Lin, H.M.5
-
10
-
-
36449006180
-
-
J. A. Becker, R. Schäfer, R. Festag, W. Ruland, J. H. Wendorff, J. Pebler, S. A. Quaiser, W. Helbig, M. T. Reetz, J. Chem. Phys. 1995, 102, 2520.
-
(1995)
J. Chem. Phys.
, vol.102
, pp. 2520
-
-
Becker, J.A.1
Schäfer, R.2
Festag, R.3
Ruland, W.4
Wendorff, J.H.5
Pebler, J.6
Quaiser, S.A.7
Helbig, W.8
Reetz, M.T.9
-
14
-
-
0000936446
-
-
T. Alexakis, P. G. Tsantrizos, Y. S. Tsantrizos, J. L. Meunier. Appl. Phys. Lett. 1997, 70, 2102.
-
(1997)
Appl. Phys. Lett.
, vol.70
, pp. 2102
-
-
Alexakis, T.1
Tsantrizos, P.G.2
Tsantrizos, Y.S.3
Meunier, J.L.4
-
15
-
-
0001521820
-
-
S. Seraphin, D. Zhou, J. Jiao, M. A. Minke, S. Wang, T. Yadav, J. C. Withers, Chem. Phys. Lett. 1994, 217, 191.
-
(1994)
Chem. Phys. Lett.
, vol.217
, pp. 191
-
-
Seraphin, S.1
Zhou, D.2
Jiao, J.3
Minke, M.A.4
Wang, S.5
Yadav, T.6
Withers, J.C.7
-
16
-
-
85037791623
-
-
MSE refers to a mercurous sulfate reference electrode. The MSE has a potential of +0.64 V vs. a normal hydrogen electrode (NHE)
-
MSE refers to a mercurous sulfate reference electrode. The MSE has a potential of +0.64 V vs. a normal hydrogen electrode (NHE).
-
-
-
-
18
-
-
85037784701
-
-
note
-
The Scherrer formula is B = 0.9λ/(tcos0), where B is the width (full width at half the maximum diffracted electron intensity) of the diffraction line (radians). λ is the deBroglie wavelength of the electron (Å), t is the diameter of the crystallite (Å), and 0 the angle subtended by the beam and the diffracting plane.
-
-
-
-
19
-
-
0030787262
-
-
A. M. El-Sherik, U. Erb, J. Page, Surf. Coat. Technol. 1996, 88, 70.
-
(1996)
Surf. Coat. Technol.
, vol.88
, pp. 70
-
-
El-Sherik, A.M.1
Erb, U.2
Page, J.3
-
21
-
-
85037790400
-
-
"Instantaneous" nucleation refers to a particle growth scenario in which the time interval during which the birth of new particles occurs is much shorter than the subsequent particle growth phase
-
"Instantaneous" nucleation refers to a particle growth scenario in which the time interval during which the birth of new particles occurs is much shorter than the subsequent particle growth phase.
-
-
-
-
22
-
-
0031997486
-
-
J. V. Zoval, J. Lee, S. Gorer, R. M. Penner, J. Phys. Chem. B 1998, 102, 1166.
-
(1998)
J. Phys. Chem. B
, vol.102
, pp. 1166
-
-
Zoval, J.V.1
Lee, J.2
Gorer, S.3
Penner, R.M.4
-
23
-
-
33749006632
-
-
J. V. Zoval, R. M. Stiger, P. R. Biernacki, R. M. Penner, J. Phys. Chem. 1996, 100, 837.
-
(1996)
J. Phys. Chem.
, vol.100
, pp. 837
-
-
Zoval, J.V.1
Stiger, R.M.2
Biernacki, P.R.3
Penner, R.M.4
-
24
-
-
85037789083
-
-
2 from a 1.0 mM solution of metal ions typically requires 10-20 ms [3.4]
-
2 from a 1.0 mM solution of metal ions typically requires 10-20 ms [3.4].
-
-
-
-
25
-
-
0000061677
-
-
R. M. Nyffenegger, B. Craft, M. Shaaban, S. Gorer, R. M. Penner, Chem. Mater. 1998, 10, 1120.
-
(1998)
Chem. Mater.
, vol.10
, pp. 1120
-
-
Nyffenegger, R.M.1
Craft, B.2
Shaaban, M.3
Gorer, S.4
Penner, R.M.5
-
26
-
-
0032560999
-
-
S. Gorer, J. A. Ganske, J. C. Hemminger, R. M. Penner, J. Am. Chem. Soc. 1998, 120, 9584.
-
(1998)
J. Am. Chem. Soc.
, vol.120
, pp. 9584
-
-
Gorer, S.1
Ganske, J.A.2
Hemminger, J.C.3
Penner, R.M.4
|