메뉴 건너뛰기




Volumn 12, Issue 12, 2000, Pages 878-883

Nanocrystalline nickel nanoparticles

Author keywords

[No Author keywords available]

Indexed keywords

ELECTRODEPOSITION; GRAPHITE; HYDROGEN; NANOSTRUCTURED MATERIALS; PARTICLE SIZE ANALYSIS;

EID: 0033689922     PISSN: 09359648     EISSN: None     Source Type: Journal    
DOI: 10.1002/1521-4095(200006)12:12<878::AID-ADMA878>3.0.CO;2-X     Document Type: Article
Times cited : (143)

References (30)
  • 1
    • 0032304090 scopus 로고    scopus 로고
    • Supported nickel clusters that are smaller than 2 nm in diameter have been prepared with perfect size monodispersity (see for example: U. Heiz, Appl. Phys. A: Mater. Sci. Proc. 1998, 67, 621; U. Heiz, F. Vanolli, A. Sanchez, W. D. Schneider, J. Am. Chem. Soc. 1998, 120, 1668). The synthesis of these particles in the gas phase involves laser evaporation, mass selection, and subsequent deposition at low kinetic energies onto single crystal MgO surfaces. This elegant technique can not be employed to prepare "large" nickel nanoparticles in the 20-500 nm diameter range of interest in this study.
    • (1998) Appl. Phys. A: Mater. Sci. Proc. , vol.67 , pp. 621
    • Heiz, U.1
  • 2
    • 0032560970 scopus 로고    scopus 로고
    • The synthesis of these particles in the gas phase involves laser evaporation, mass selection, and subsequent deposition at low kinetic energies onto single crystal MgO surfaces. This elegant technique can not be employed to prepare "large" nickel nanoparticles in the 20-500 nm diameter range of interest in this study
    • Supported nickel clusters that are smaller than 2 nm in diameter have been prepared with perfect size monodispersity (see for example: U. Heiz, Appl. Phys. A: Mater. Sci. Proc. 1998, 67, 621; U. Heiz, F. Vanolli, A. Sanchez, W. D. Schneider, J. Am. Chem. Soc. 1998, 120, 1668). The synthesis of these particles in the gas phase involves laser evaporation, mass selection, and subsequent deposition at low kinetic energies onto single crystal MgO surfaces. This elegant technique can not be employed to prepare "large" nickel nanoparticles in the 20-500 nm diameter range of interest in this study.
    • (1998) J. Am. Chem. Soc. , vol.120 , pp. 1668
    • Heiz, U.1    Vanolli, F.2    Sanchez, A.3    Schneider, W.D.4
  • 3
    • 85012820453 scopus 로고
    • Two solution phase methods for synthesizing nickel nanoparticles having a similar degree of size monodispersity are the "redox-controlled" and "electrochemical" methods of Reetz and co-workers (see for example: M. T. Reetz, W. Helbig, J. Am. Chem. Soc. 1994, 116, 7401. J. A. Becker, R. Schafer, R. Festag, W. Ruland, J. H. Wendorff, J. Pebler, S. A. Quaiser, W. Helbig, M. T. Reetz, J. Chem. Phys. 1995, 103, 2520. M. T. Reetz, M. Maase, Adv. Mater. 1999, 11, 773), and the so- called "polyol process" of Fiével and co-workers (described in: F. Fiévet, J.-P. Lagier, M. Fietglarz, MRS Bull. 1989, 14, 29. P. Toneguzzo, G. Viau, O. Acher, F. Fievet-Vincent, F. Fiévet, Adv. Mater. 1998, 10, 1032).
    • (1994) J. Am. Chem. Soc. , vol.116 , pp. 7401
    • Reetz, M.T.1    Helbig, W.2
  • 4
    • 36449006180 scopus 로고
    • Two solution phase methods for synthesizing nickel nanoparticles having a similar degree of size monodispersity are the "redox-controlled" and "electrochemical" methods of Reetz and co-workers (see for example: M. T. Reetz, W. Helbig, J. Am. Chem. Soc. 1994, 116, 7401. J. A. Becker, R. Schafer, R. Festag, W. Ruland, J. H. Wendorff, J. Pebler, S. A. Quaiser, W. Helbig, M. T. Reetz, J. Chem. Phys. 1995, 103, 2520. M. T. Reetz, M. Maase, Adv. Mater. 1999, 11, 773), and the so- called "polyol process" of Fiével and co-workers (described in: F. Fiévet, J.-P. Lagier, M. Fietglarz, MRS Bull. 1989, 14, 29. P. Toneguzzo, G. Viau, O. Acher, F. Fievet-Vincent, F. Fiévet, Adv. Mater. 1998, 10, 1032).
    • (1995) J. Chem. Phys. , vol.103 , pp. 2520
    • Becker, J.A.1    Schafer, R.2    Festag, R.3    Ruland, W.4    Wendorff, J.H.5    Pebler, J.6    Quaiser, S.A.7    Helbig, W.8    Reetz, M.T.9
  • 5
    • 0000104516 scopus 로고    scopus 로고
    • and the so-called "polyol process" of Fiével and co-workers
    • Two solution phase methods for synthesizing nickel nanoparticles having a similar degree of size monodispersity are the "redox-controlled" and "electrochemical" methods of Reetz and co-workers (see for example: M. T. Reetz, W. Helbig, J. Am. Chem. Soc. 1994, 116, 7401. J. A. Becker, R. Schafer, R. Festag, W. Ruland, J. H. Wendorff, J. Pebler, S. A. Quaiser, W. Helbig, M. T. Reetz, J. Chem. Phys. 1995, 103, 2520. M. T. Reetz, M. Maase, Adv. Mater. 1999, 11, 773), and the so-called "polyol process" of Fiével and co-workers (described in: F. Fiévet, J.-P. Lagier, M. Fietglarz, MRS Bull. 1989, 14, 29. P. Toneguzzo, G. Viau, O. Acher, F. Fievet-Vincent, F. Fiévet, Adv. Mater. 1998, 10, 1032).
    • (1999) Adv. Mater. , vol.11 , pp. 773
    • Reetz, M.T.1    Maase, M.2
  • 6
    • 4143142583 scopus 로고
    • Two solution phase methods for synthesizing nickel nanoparticles having a similar degree of size monodispersity are the "redox-controlled" and "electrochemical" methods of Reetz and co-workers (see for example: M. T. Reetz, W. Helbig, J. Am. Chem. Soc. 1994, 116, 7401. J. A. Becker, R. Schafer, R. Festag, W. Ruland, J. H. Wendorff, J. Pebler, S. A. Quaiser, W. Helbig, M. T. Reetz, J. Chem. Phys. 1995, 103, 2520. M. T. Reetz, M. Maase, Adv. Mater. 1999, 11, 773), and the so- called "polyol process" of Fiével and co-workers (described in: F. Fiévet, J.-P. Lagier, M. Fietglarz, MRS Bull. 1989, 14, 29. P. Toneguzzo, G. Viau, O. Acher, F. Fievet-Vincent, F. Fiévet, Adv. Mater. 1998, 10, 1032).
    • (1989) MRS Bull. , vol.14 , pp. 29
    • Fiévet, F.1    Lagier, J.-P.2    Fietglarz, M.3
  • 7
    • 0032164463 scopus 로고    scopus 로고
    • Two solution phase methods for synthesizing nickel nanoparticles having a similar degree of size monodispersity are the "redox-controlled" and "electrochemical" methods of Reetz and co-workers (see for example: M. T. Reetz, W. Helbig, J. Am. Chem. Soc. 1994, 116, 7401. J. A. Becker, R. Schafer, R. Festag, W. Ruland, J. H. Wendorff, J. Pebler, S. A. Quaiser, W. Helbig, M. T. Reetz, J. Chem. Phys. 1995, 103, 2520. M. T. Reetz, M. Maase, Adv. Mater. 1999, 11, 773), and the so- called "polyol process" of Fiével and co-workers (described in: F. Fiévet, J.-P. Lagier, M. Fietglarz, MRS Bull. 1989, 14, 29. P. Toneguzzo, G. Viau, O. Acher, F. Fievet-Vincent, F. Fiévet, Adv. Mater. 1998, 10, 1032).
    • (1998) Adv. Mater. , vol.10 , pp. 1032
    • Toneguzzo, P.1    Viau, G.2    Acher, O.3    Fievet-Vincent, F.4    Fiévet, F.5
  • 16
    • 85037791623 scopus 로고    scopus 로고
    • MSE refers to a mercurous sulfate reference electrode. The MSE has a potential of +0.64 V vs. a normal hydrogen electrode (NHE)
    • MSE refers to a mercurous sulfate reference electrode. The MSE has a potential of +0.64 V vs. a normal hydrogen electrode (NHE).
  • 18
    • 85037784701 scopus 로고    scopus 로고
    • note
    • The Scherrer formula is B = 0.9λ/(tcos0), where B is the width (full width at half the maximum diffracted electron intensity) of the diffraction line (radians). λ is the deBroglie wavelength of the electron (Å), t is the diameter of the crystallite (Å), and 0 the angle subtended by the beam and the diffracting plane.
  • 21
    • 85037790400 scopus 로고    scopus 로고
    • "Instantaneous" nucleation refers to a particle growth scenario in which the time interval during which the birth of new particles occurs is much shorter than the subsequent particle growth phase
    • "Instantaneous" nucleation refers to a particle growth scenario in which the time interval during which the birth of new particles occurs is much shorter than the subsequent particle growth phase.
  • 24
    • 85037789083 scopus 로고    scopus 로고
    • 2 from a 1.0 mM solution of metal ions typically requires 10-20 ms [3.4]
    • 2 from a 1.0 mM solution of metal ions typically requires 10-20 ms [3.4].


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.