메뉴 건너뛰기




Volumn 84, Issue 5-6, 1999, Pages 457-464

A neural network approach for predicting stock abundance of the Barents Sea capelin

Author keywords

Abundance; Assessment; Barents sea; Capelin; Genetic algorithm; Neural networks; Prognosis

Indexed keywords


EID: 0033620025     PISSN: 00364827     EISSN: None     Source Type: Journal    
DOI: 10.1080/00364827.1999.10807351     Document Type: Article
Times cited : (11)

References (28)
  • 2
    • 85024035382 scopus 로고    scopus 로고
    • Preliminary report of the international Ø-group survey in the Barents Sea and adjacent waters in Au-gust-September 1999
    • Anon
    • Anon. 1999a. Preliminary report of the international Ø-group survey in the Barents Sea and adjacent waters in Au-gust-September 1999. ICES Council Meeting 1999.
    • (1999) ICES Council Meeting , pp. 1999
  • 4
    • 0030897945 scopus 로고    scopus 로고
    • Analysis and prediction of the fluctuation of sardine abundance using a neural network
    • Aoki I, Komatsu T. 1997. Analysis and prediction of the fluctuation of sardine abundance using a neural network. Oceanologica Acta 20:81-88.
    • (1997) Oceanologica Acta , vol.20 , pp. 81-88
    • Aoki, I.1    Komatsu, T.2
  • 5
    • 0033578442 scopus 로고    scopus 로고
    • Prediction of response of zooplankton biomass to climatic and oceanic changes
    • Aoki I, Komatsu T, Hwang K. 1999. Prediction of response of zooplankton biomass to climatic and oceanic changes. Ecological modelling 120:261-270.
    • (1999) Ecological Modelling , vol.120 , pp. 261-270
    • Aoki, I.1    Hwang, T.K.2
  • 6
    • 0029664143 scopus 로고    scopus 로고
    • Artificial neural networks versus multiple linear regression: Predicting P/B ratios from empirical data
    • Brey T, Jarre-Teichmann A, Borlich O. 1996. Artificial neural networks versus multiple linear regression: predicting P/B ratios from empirical data. Marine Ecology Progress Series 140:251-256.
    • (1996) Marine Ecology Progress Series , vol.140 , pp. 251-256
    • Brey, T.1    Jarre-Teichmann, A.2    Borlich, O.3
  • 8
    • 0007251221 scopus 로고    scopus 로고
    • The population biology and exploitation of capelin (Mallotus villosus) in the Barents Sea
    • Gjesaster H. 1998. The population biology and exploitation of capelin (Mallotus villosus) in the Barents Sea. Sarsia 83:453-496.
    • (1998) Sarsia , vol.83 , pp. 453-496
    • Gjesaster, H.1
  • 9
    • 0032169477 scopus 로고    scopus 로고
    • Effects of the presence of herring (Clupea harengus) on the stock-recruitment relationship of Barents Sea capelin (Mallotus villosus).
    • Gjesacter H, Bogstad B. 1998. Effects of the presence of herring (Clupea harengu.s) on the stock-recruitment relationship of Barents Sea capelin (Mallotus villosus). Fisheries Research 38:57-71.
    • (1998) Fisheries Research , vol.38 , pp. 57-71
    • Gjesacter, H.1    Bogstad, B.2
  • 10
    • 0040577146 scopus 로고    scopus 로고
    • The Barents Sea capelin stock 1972-1997. A synthesis of results from acoustic surveys
    • Gjesaeter H, Dommasnes A, Rett ingen B. 1998. The Barents Sea capelin stock 1972-1997. A synthesis of results from acoustic surveys. Sarsia 83:497-510.
    • (1998) Sarsia , vol.83 , pp. 497-510
    • Gjesaeter, H.1    Dommasnes, A.2    Rett Ingen, B.3
  • 11
    • 0023480331 scopus 로고
    • Growth of the Barents Sea capelin, Mallotus villosus, in relation to climate
    • Gjesaeter H, Loeng H. 1987. Growth of the Barents Sea capelin, Mallotus villosus, in relation to climate. Environmental Biology of Fishes 20:293-300.
    • (1987) Environmental Biology of Fishes , vol.20 , pp. 293-300
    • Gjesaeter, H.1    Loeng, H.2
  • 12
    • 0028163221 scopus 로고
    • Biodiversity and exploitation of the main fish stocks in the Norwegian-Barents Sea ecosystem
    • Hamre J. 1994. Biodiversity and exploitation of the main fish stocks in the Norwegian-Barents Sea ecosystem. Biodiversity and Conservation. 3:272-291.
    • (1994) Biodiversity and Conservation , vol.3 , pp. 272-291
    • Hamre, J.1
  • 13
    • 0009148318 scopus 로고    scopus 로고
    • System model (Syslmod) for the Norwegian Sea and the Barents Sea
    • Redseth T, editor
    • Hamre J, Hatlebakk E. 1998. System model (Syslmod) for the Norwegian Sea and the Barents Sea. In: Redseth T, editor. Models for multispecies management. Physica-Verlag. p 93-115.
    • (1998) Models for Multispecies Management. Physica-Verlag , pp. 93-115
    • Hamre, J.1    Hatlebakk, E.2
  • 16
    • 0031691958 scopus 로고    scopus 로고
    • Ecology in Marc Pentium: An individual based spatio temporal model for fish with adapted be-haviour
    • Husc G, Giskc J 1998. Ecology in Marc Pentium: an individual based spatio temporal model for fish with adapted be-haviour. Fisheries Research 37:163-178.
    • (1998) Fisheries Research , vol.37 , pp. 163-178
    • Husc, G.1    Giskc, J.2
  • 17
    • 0034731156 scopus 로고    scopus 로고
    • Juvenile herring prey on Barents Sea capelin larvae
    • (in press)
    • Husc I, Toresen R. 2000. Juvenile herring prey on Barents Sea capelin larvae. Sarsia. (in press)
    • (2000) Sarsia
    • Husc, I.1    Toresen, R.2
  • 19
    • 85010160193 scopus 로고
    • Prediction of catch of Japanese sardine larvae in Sagami Bay using a neural network
    • Komalsu T, Aoki I, Mitant I, Ishii T. 1994. Prediction of catch of Japanese sardine larvae in Sagami Bay using a neural network. Fisheries Science 60:385-391.
    • (1994) Fisheries Science , vol.60 , pp. 385-391
    • Komalsu, T.1    Aoki, I.2    Mitant, I.3    Ishii, T.4
  • 20
    • 0033578393 scopus 로고    scopus 로고
    • Predicting fish yield of African lakes using neural networks
    • Lae R, Lek S, Moreau J. 1999. Predicting fish yield of African lakes using neural networks. Ecological Modelling 120:325-335.
    • (1999) Ecological Modelling , vol.120 , pp. 325-335
    • Lae, R.1    Lek, S.2    Moreau, J.3
  • 21
    • 0344604541 scopus 로고    scopus 로고
    • Artificial neural networks as a tool in ecological modelling, an introduction
    • Lck S, Guégan JF. 1999. Artificial neural networks as a tool in ecological modelling, an introduction. Ecological modelling 120:65-73.
    • (1999) Ecological Modelling , vol.120 , pp. 65-73
    • Lck, S.1    Guégan, J.F.2
  • 25
    • 0003100022 scopus 로고
    • Automated parameter tuning for interpretation of synthetic images
    • Davis L, editor, New York: Van Nostrand Rcinhold
    • Montana DJ. 1991. Automated parameter tuning for interpretation of synthetic images. In: Davis L, editor. Handtxwk of genetic algorithms. New York: Van Nostrand Rcinhold. p282-311.
    • (1991) Handtxwk of Genetic Algorithms , pp. p282-p311
    • Montana, D.J.1
  • 27
    • 0022471098 scopus 로고
    • Learning representations by back propagating errors.
    • Rummelhan DE, Hinton GE, Williams RJ. 1986. Learning representations by back propagating errors. Nature 323:533-536
    • (1986) Nature , vol.323 , pp. 533-536
    • Rummelhan, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 28
    • 0002080596 scopus 로고    scopus 로고
    • Guide to some computerised artificial intelligence methods.
    • Megrcy BA, Moksness E, editors, London: Chapman & Hall
    • Saila SB. 1996. Guide to some computerised artificial intelligence methods. In: Megrcy BA, Moksness E, editors. Computers in fisheries research. London: Chapman & Hall. P 1-40.
    • (1996) Computers in Fisheries Research. , pp. 1-40
    • Saila, S.B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.