-
1
-
-
0003364365
-
Technical Summary
-
Cambridge Univ. Press, Cambridge
-
Technical Summary, in Climate Change 1995, J. T. Houghton et al., Eds. (Cambridge Univ. Press, Cambridge, 1996), pp. 9-49.
-
(1996)
Climate Change 1995
, pp. 9-49
-
-
Houghton, J.T.1
-
3
-
-
0345154949
-
-
T. D. Sharkey, Bot. Rev. 51, 507 (1985); C A. Gunderson and S. D. Wullschleger, Photosynth. Res. 39, 369 (1994); B. G. Drake, M. A. González-Meler, S. P. Long, Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 609 (1997).
-
(1985)
Bot. Rev.
, vol.51
, pp. 507
-
-
Sharkey, T.D.1
-
4
-
-
0001283426
-
-
T. D. Sharkey, Bot. Rev. 51, 507 (1985); C A. Gunderson and S. D. Wullschleger, Photosynth. Res. 39, 369 (1994); B. G. Drake, M. A. González-Meler, S. P. Long, Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 609 (1997).
-
(1994)
Photosynth. Res.
, vol.39
, pp. 369
-
-
Gunderson, C.A.1
Wullschleger, S.D.2
-
5
-
-
0347614749
-
-
T. D. Sharkey, Bot. Rev. 51, 507 (1985); C A. Gunderson and S. D. Wullschleger, Photosynth. Res. 39, 369 (1994); B. G. Drake, M. A. González-Meler, S. P. Long, Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 609 (1997).
-
(1997)
Annu. Rev. Plant Physiol. Plant Mol. Biol.
, vol.48
, pp. 609
-
-
Drake, B.G.1
González-Meler, M.A.2
Long, S.P.3
-
7
-
-
0026540205
-
-
R. J. Norby et al., Nature 357, 322 (1992).
-
(1992)
Nature
, vol.357
, pp. 322
-
-
Norby, R.J.1
-
8
-
-
0026002272
-
-
L. J. Graumlich, Ecology 72, 1 (1991); J. L. Innes, Holocene 1, 168 (1991); P. C. Van Deusen, Can. J. For. Res. 22, 660 (1992); R. J. Luxmore, S. O. Wullschleger, P. J. Hanson, Water Air Soil Pollut. 70, 309 (1993).
-
(1991)
Ecology
, vol.72
, pp. 1
-
-
Graumlich, L.J.1
-
9
-
-
0026304649
-
-
L. J. Graumlich, Ecology 72, 1 (1991); J. L. Innes, Holocene 1, 168 (1991); P. C. Van Deusen, Can. J. For. Res. 22, 660 (1992); R. J. Luxmore, S. O. Wullschleger, P. J. Hanson, Water Air Soil Pollut. 70, 309 (1993).
-
(1991)
Holocene
, vol.1
, pp. 168
-
-
Innes, J.L.1
-
10
-
-
0026498927
-
-
L. J. Graumlich, Ecology 72, 1 (1991); J. L. Innes, Holocene 1, 168 (1991); P. C. Van Deusen, Can. J. For. Res. 22, 660 (1992); R. J. Luxmore, S. O. Wullschleger, P. J. Hanson, Water Air Soil Pollut. 70, 309 (1993).
-
(1992)
Can. J. For. Res.
, vol.22
, pp. 660
-
-
Van Deusen, P.C.1
-
11
-
-
0027676201
-
-
L. J. Graumlich, Ecology 72, 1 (1991); J. L. Innes, Holocene 1, 168 (1991); P. C. Van Deusen, Can. J. For. Res. 22, 660 (1992); R. J. Luxmore, S. O. Wullschleger, P. J. Hanson, Water Air Soil Pollut. 70, 309 (1993).
-
(1993)
Water Air Soil Pollut.
, vol.70
, pp. 309
-
-
Luxmore, R.J.1
Wullschleger, S.O.2
Hanson, P.J.3
-
14
-
-
0029847544
-
-
Y. He, X. Yang, D. R. Miller, G. R. Hendrey, K. F. Lewin, J. Nagy, Trans. ASAE (Am. Soc. Agric. Eng.) 39, 1551 (1996); G. R. Hendrey, D. S. Ellsworth, K. F. Lewin, J. Nagy, Global Change Biol. 5, 293 (1999); A. R. McLeod and S. P. Long, Adv. Ecol. Res. 28, 1 (1999).
-
(1996)
Trans. ASAE (Am. Soc. Agric. Eng.)
, vol.39
, pp. 1551
-
-
He, Y.1
Yang, X.2
Miller, D.R.3
Hendrey, G.R.4
Lewin, K.F.5
Nagy, J.6
-
15
-
-
0032789783
-
-
Y. He, X. Yang, D. R. Miller, G. R. Hendrey, K. F. Lewin, J. Nagy, Trans. ASAE (Am. Soc. Agric. Eng.) 39, 1551 (1996); G. R. Hendrey, D. S. Ellsworth, K. F. Lewin, J. Nagy, Global Change Biol. 5, 293 (1999); A. R. McLeod and S. P. Long, Adv. Ecol. Res. 28, 1 (1999).
-
(1999)
Global Change Biol.
, vol.5
, pp. 293
-
-
Hendrey, G.R.1
Ellsworth, D.S.2
Lewin, K.F.3
Nagy, J.4
-
16
-
-
77956785075
-
-
Y. He, X. Yang, D. R. Miller, G. R. Hendrey, K. F. Lewin, J. Nagy, Trans. ASAE (Am. Soc. Agric. Eng.) 39, 1551 (1996); G. R. Hendrey, D. S. Ellsworth, K. F. Lewin, J. Nagy, Global Change Biol. 5, 293 (1999); A. R. McLeod and S. P. Long, Adv. Ecol. Res. 28, 1 (1999).
-
(1999)
Adv. Ecol. Res.
, vol.28
, pp. 1
-
-
McLeod, A.R.1
Long, S.P.2
-
17
-
-
0344724581
-
-
note
-
-1.
-
-
-
-
20
-
-
0344724578
-
-
note
-
Within the elevated and ambient groups, RBAI changed ≤0.2% over the entire range of basal areas and therefore was considered independent of tree size.
-
-
-
-
21
-
-
0344724577
-
-
note
-
Regional estimates of drought, expressed as the modified Palmer drought index, were obtained from the National Oceanic and Atmospheric Administration, National Climate Data Center.
-
-
-
-
24
-
-
0004708193
-
-
2, randomly placed on the forest floor of each ring. The biomass increment for saplings, vines, and shrubs was calculated with species-specific allometric equations. The mass of living and dead fine roots (≤1 mm diameter) was measured in soil cores removed from the ambient and elevated plots (five cores per plot) at 2-month intervals; fine root increments were calculated from the regression of live root biomass versus time over the period of November 1997 to November 1998. Root turnover rates were calculated as annual mortality plus annual decomposition for the same period [H. Persson, Vegetatio 41, 101 (1979); D. Santantonio and J. C. Grace, Can. J. For. Res. 17, 900 (1987); K. A. Vogt, D. J. Vogt, J. Bloomfield, Plant Soil 200, 71 (1998)].
-
(1979)
Vegetatio
, vol.41
, pp. 101
-
-
Persson, H.1
-
25
-
-
0001347128
-
-
2, randomly placed on the forest floor of each ring. The biomass increment for saplings, vines, and shrubs was calculated with species-specific allometric equations. The mass of living and dead fine roots (≤1 mm diameter) was measured in soil cores removed from the ambient and elevated plots (five cores per plot) at 2-month intervals; fine root increments were calculated from the regression of live root biomass versus time over the period of November 1997 to November 1998. Root turnover rates were calculated as annual mortality plus annual decomposition for the same period [H. Persson, Vegetatio 41, 101 (1979); D. Santantonio and J. C. Grace, Can. J. For. Res. 17, 900 (1987); K. A. Vogt, D. J. Vogt, J. Bloomfield, Plant Soil 200, 71 (1998)].
-
(1987)
Can. J. For. Res.
, vol.17
, pp. 900
-
-
Santantonio, D.1
Grace, J.C.2
-
26
-
-
0031982453
-
-
2, randomly placed on the forest floor of each ring. The biomass increment for saplings, vines, and shrubs was calculated with species-specific allometric equations. The mass of living and dead fine roots (≤1 mm diameter) was measured in soil cores removed from the ambient and elevated plots (five cores per plot) at 2-month intervals; fine root increments were calculated from the regression of live root biomass versus time over the period of November 1997 to November 1998. Root turnover rates were calculated as annual mortality plus annual decomposition for the same period [H. Persson, Vegetatio 41, 101 (1979); D. Santantonio and J. C. Grace, Can. J. For. Res. 17, 900 (1987); K. A. Vogt, D. J. Vogt, J. Bloomfield, Plant Soil 200, 71 (1998)].
-
(1998)
Plant Soil
, vol.200
, pp. 71
-
-
Vogt, K.A.1
Vogt, D.J.2
Bloomfield, J.3
-
27
-
-
0032147886
-
-
2 enrichment does not alter the allometric relations for loblolly pine (15) or the root/ shoot ratio for other tree species (4). 18. The above-ground biomass of subcanopy trees was calculated from equations in C. D. Monk, G. I. Child, S. A. Nicholson, Oikos 21, 136 (1970), and the coarse-root biomass was calculated from R. H. Whittaker and P. L. Marks, in Primary Productivity of the Biosphere, H. Lieth and R. H. Whittaker, Eds. (Springer-Verlag, New York, 1975), pp. 55-118 .
-
(1998)
Can. J. For. Res.
, vol.28
, pp. 1116
-
-
Naidu, S.L.1
DeLucia, E.H.2
Thomas, R.B.3
-
28
-
-
0001880398
-
-
H. Lieth and R. H. Whittaker, Eds. Springer-Verlag, New York
-
2 enrichment does not alter the allometric relations for loblolly pine (15) or the root/ shoot ratio for other tree species (4). 18. The above-ground biomass of subcanopy trees was calculated from equations in C. D. Monk, G. I. Child, S. A. Nicholson, Oikos 21, 136 (1970), and the coarse-root biomass was calculated from R. H. Whittaker and P. L. Marks, in Primary Productivity of the Biosphere, H. Lieth and R. H. Whittaker, Eds. (Springer-Verlag, New York, 1975), pp. 55-118 .
-
(1975)
Primary Productivity of the Biosphere
, pp. 55-118
-
-
Whittaker, R.H.1
Marks, P.L.2
-
29
-
-
0002136134
-
-
M. J. Crawley, Stud. Ecol. 10, 1 (1983); H. Cyr and M. L. Pace, Nature 361, 148 (1993).
-
(1983)
Stud. Ecol.
, vol.10
, pp. 1
-
-
Crawley, M.J.1
-
30
-
-
0027388389
-
-
M. J. Crawley, Stud. Ecol. 10, 1 (1983); H. Cyr and M. L. Pace, Nature 361, 148 (1993).
-
(1993)
Nature
, vol.361
, pp. 148
-
-
Cyr, H.1
Pace, M.L.2
-
31
-
-
0001630762
-
-
D. E. Reichle, Ed. Cambridge Univ. Press, Cambridge
-
D. E. DeAngelis, R. H. Gardener, H. H. Shugart, in Dynamic Properties of Forest Ecosystems, D. E. Reichle, Ed. (Cambridge Univ. Press, Cambridge, 1981), pp. 567-672; S. G. McNulty, J. M. Vose, W. T. Swank, For. Ecol. Manag. 86, 241 (1996).
-
(1981)
Dynamic Properties of Forest Ecosystems
, pp. 567-672
-
-
DeAngelis, D.E.1
Gardener, R.H.2
Shugart, H.H.3
-
32
-
-
0030587660
-
-
D. E. DeAngelis, R. H. Gardener, H. H. Shugart, in Dynamic Properties of Forest Ecosystems, D. E. Reichle, Ed. (Cambridge Univ. Press, Cambridge, 1981), pp. 567-672; S. G. McNulty, J. M. Vose, W. T. Swank, For. Ecol. Manag. 86, 241 (1996).
-
(1996)
For. Ecol. Manag.
, vol.86
, pp. 241
-
-
McNulty, S.G.1
Vose, J.M.2
Swank, W.T.3
-
33
-
-
0001762394
-
-
2 efflux from the soil was calculated by integrating the area beneath these plots of the monthly measurements.
-
(1982)
Pedobiologia
, vol.23
, pp. 321
-
-
Edwards, N.T.1
-
34
-
-
0031870298
-
-
2 efflux from the soil was calculated by integrating the area beneath these plots of the monthly measurements.
-
(1998)
Ecology
, vol.79
, pp. 1467
-
-
Grogan, P.1
-
35
-
-
0031977514
-
-
Y. Pan et al., Oecologia 114, 389 (1998).
-
(1998)
Oecologia
, vol.114
, pp. 389
-
-
Pan, Y.1
-
36
-
-
0027470607
-
-
J. M. Melillo et al., Nature 363, 234 (1993).
-
(1993)
Nature
, vol.363
, pp. 234
-
-
Melillo, J.M.1
-
38
-
-
0027332451
-
-
in press
-
H. N. Comins and R. E. McMurtrie, Ecol. Appl. 3, 666 (1993); Y. Luo and J. F. Reynolds, Ecology, in press.
-
Ecology
-
-
Luo, Y.1
Reynolds, J.F.2
-
40
-
-
18044373698
-
-
S. Hanenschwiler, F. Miglietta, A. Raschi, C. Körner, ibid. 3, 463 (1997).
-
(1997)
Global Change Biol.
, vol.3
, pp. 463
-
-
Hanenschwiler, S.1
Miglietta, F.2
Raschi, A.3
Körner, C.4
-
41
-
-
0345586852
-
-
note
-
If we assume that half of global NPP (30 Ct of carbon per year) is in forests, then a 25% stimulation of NPP would capture 7.5 Gt of the projected 15 Gt of carbon emitted from fossil fuel combustion in 2050 (1).
-
-
-
-
42
-
-
0345154938
-
-
note
-
We are grateful to the U.S. Department of Energy, NASA, Electric Power Research Institute, and NSF for their support of this research.
-
-
-
|