-
3
-
-
0020591567
-
Non linear scalar field equations I. Existence of a ground state
-
H. Berestycki and P.L. Lions, Non linear scalar field equations I. Existence of a ground state, Arch. Rat. Mech. Anal., 82 (1983), 313-345.
-
(1983)
Arch. Rat. Mech. Anal.
, vol.82
, pp. 313-345
-
-
Berestycki, H.1
Lions, P.L.2
-
4
-
-
0015249887
-
3 = 0 and a variational characterization of other solutions
-
3 = 0 and a variational characterization of other solutions, Arch. Rat. Mech. Anal., 46 (1972), 81-95.
-
(1972)
Arch. Rat. Mech. Anal.
, vol.46
, pp. 81-95
-
-
Coffman, C.V.1
-
7
-
-
0003653464
-
-
Elliptic Equations, Research Notes in Mathematics 106, Pitman
-
J.I. diáaz, "Nonlinear Partial Differential Equations and Free Boundaries," Volume I, Elliptic Equations, Research Notes in Mathematics 106, Pitman, 1985.
-
(1985)
Nonlinear Partial Differential Equations and Free Boundaries
, vol.1
-
-
Diáaz, J.I.1
-
8
-
-
84966218113
-
Asymptotic states for equations of reaction and Diffusion
-
P.C. Fife, Asymptotic states for equations of reaction and Diffusion, Bull. Amer. Math. Soc., 84 (1978), 693-726.
-
(1978)
Bull. Amer. Math. Soc.
, vol.84
, pp. 693-726
-
-
Fife, P.C.1
-
10
-
-
34250271532
-
Symmetry and related properties via the Maximum Principle
-
B. Gidas, W.M. Ni, and L. Nirenberg, Symmetry and related properties via the Maximum Principle, Commun. Math. Phys., 68 (1979), 209-243
-
(1979)
Commun. Math. Phys.
, vol.68
, pp. 209-243
-
-
Gidas, B.1
Ni, W.M.2
Nirenberg, L.3
-
12
-
-
84972503922
-
Symmetry results for reaction Diffusion equations
-
H.G. Kaper, M.K. Kwong, and Y. Li, Symmetry results for reaction Diffusion equations, Differential Integral Equations, 6 (1993), 1045-1056.
-
(1993)
Differential Integral Equations
, vol.6
, pp. 1045-1056
-
-
Kaper, H.G.1
Kwong, M.K.2
Li, Y.3
-
13
-
-
84980080697
-
Heavy rotating string-A non linear eigenvalue problem
-
I.I. Kolodner, Heavy rotating string-A non linear eigenvalue problem, Comm. Pure and Appl. Math., 8 (1955), 395-408.
-
(1955)
Comm. Pure and Appl. Math.
, vol.8
, pp. 395-408
-
-
Kolodner, I.I.1
-
15
-
-
84972508309
-
Uniqueness of the positive solution of Δu+f(u) = 0 in an annulus
-
M.K. Kwong and L. Zhang, Uniqueness of the positive solution of Δu+f(u) = 0 in an annulus, Differential Integral Equations, 4 (1991), 583-599.
-
(1991)
Differential Integral Equations
, vol.4
, pp. 583-599
-
-
Kwong, M.K.1
Zhang, L.2
-
16
-
-
0001304768
-
Uniqueness of positive radial solutions of Δu+f(u) = 0
-
K. McLeod and J. Serrin, Uniqueness of positive radial solutions of Δu+f(u) = 0, Arch. Rational Mech. Anal., 99 (1987), 115-145.
-
(1987)
Arch. Rational Mech. Anal.
, vol.99
, pp. 115-145
-
-
McLeod, K.1
Serrin, J.2
-
17
-
-
84990576581
-
Uniqueness and nonuniqueness for positive radial solutions of Δu+ f(u, r) = 0
-
W.M. Ni and R. Nussbaum, Uniqueness and nonuniqueness for positive radial solutions of Δu+ f(u, r) = 0, Comm. Pure and Appl. Math., 38 (1985), 67-108.
-
(1985)
Comm. Pure and Appl. Math.
, vol.38
, pp. 67-108
-
-
Ni, W.M.1
Nussbaum, R.2
-
20
-
-
0001901435
-
Minimax Methods in Critical Point Theory with Applications to Differential Equations
-
C.B.M.S. Regional Conference Series in Mathematica
-
P. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations," C.B.M.S. Regional Conference Series in Mathematica, 65, Amer. Math. Soc., Providence, 1986.
-
(1986)
Amer Math. Soc., Providence
, vol.65
-
-
Rabinowitz, P.1
-
21
-
-
0001358147
-
A symmetry problem in potential theory
-
J. Serrin, A symmetry problem in potential theory, Arch. Ration. Mech., 43 (1971), 304-318.
-
(1971)
Arch. Ration. Mech.
, vol.43
, pp. 304-318
-
-
Serrin, J.1
-
22
-
-
0000540347
-
Existence of solitary waves in higher dimensions
-
W.A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1977), 149-162.
-
(1977)
Comm. Math. Phys.
, vol.55
, pp. 149-162
-
-
Strauss, W.A.1
|