-
2
-
-
0000265025
-
Weighted voting doesn't work: A mathematical analysis
-
Banzhaf JF (1965) Weighted voting doesn't work: a mathematical analysis. Rutgers Law Rev. 19: 317-343
-
(1965)
Rutgers Law Rev.
, vol.19
, pp. 317-343
-
-
Banzhaf, J.F.1
-
5
-
-
0002324262
-
Solutions to General Non-Zero-Sum Games
-
Tucker AW, Luce RD (eds) Princeton University Press, Princeton
-
Gillies DB (1959) Solutions to General Non-Zero-Sum Games. In: Tucker AW, Luce RD (eds) Contributions to the Theory of Games, Volume IV (Annals of Mathematical Studies, 40) Princeton University Press, Princeton, pp 47-85
-
(1959)
Contributions to the Theory of Games, Volume IV (Annals of Mathematical Studies, 40)
, vol.4
, pp. 47-85
-
-
Gillies, D.B.1
-
7
-
-
70350087742
-
Social Choice
-
Aumann RJ, Hart S (eds) Elsevier Science, Amsterdam
-
Moulin H (1994) Social Choice. In: Aumann RJ, Hart S (eds) Handbook of Game Theory, Vol 2. Elsevier Science, Amsterdam, pp 1091-1125
-
(1994)
Handbook of Game Theory
, vol.2
, pp. 1091-1125
-
-
Moulin, H.1
-
8
-
-
0001730497
-
Non-Cooperative Games
-
Nash JF (1951) Non-Cooperative Games. Ann Math 54: 286-295
-
(1951)
Ann Math
, vol.54
, pp. 286-295
-
-
Nash, J.F.1
-
9
-
-
0003019549
-
Perfect equilibrium in a bargaining model
-
Rubinstein A (1982) Perfect equilibrium in a bargaining model. Econometrica 50: 97-109
-
(1982)
Econometrica
, vol.50
, pp. 97-109
-
-
Rubinstein, A.1
-
10
-
-
0041153032
-
The family of least square values for TU games
-
Working paper Economia Aplicada No. 5/1995, Universidad del País Vasco/EHU, Bilbao. (forthcoming)
-
Ruiz L, Valenciano F, Zarzuelo JM (1995) The family of least square values for TU games. Working paper Economia Aplicada No. 5/1995, Universidad del País Vasco/EHU, Bilbao. Games Econ Beh (forthcoming)
-
(1995)
Games Econ Beh
-
-
Ruiz, L.1
Valenciano, F.2
Zarzuelo, J.M.3
-
11
-
-
0030534741
-
The Least Square Prenucleolus and the Least Square Nucleolus. Two Values for TU Games based on the Excess Vector
-
Ruiz L, Valenciano F, Zarzuelo JM (1996) The Least Square Prenucleolus and the Least Square Nucleolus. Two Values for TU Games based on the Excess Vector. Int J Game Theory 25: 113-134
-
(1996)
Int J Game Theory
, vol.25
, pp. 113-134
-
-
Ruiz, L.1
Valenciano, F.2
Zarzuelo, J.M.3
-
12
-
-
0001255447
-
A value for n-Person Games
-
Shapley LS (1953) A value for n-Person Games. Ann Math Study 28: 307-317
-
(1953)
Ann Math Study
, vol.28
, pp. 307-317
-
-
Shapley, L.S.1
-
13
-
-
0001821716
-
An Axiomatization of Borda's rule
-
Young HP (1974) An Axiomatization of Borda's rule. J Econ Theory 9: 43-52
-
(1974)
J Econ Theory
, vol.9
, pp. 43-52
-
-
Young, H.P.1
|