-
1
-
-
0000658664
-
Edgeworth expansions for sampling without replacement from finite populations
-
BABU, J. G. and SINGH, K. (1985). Edgeworth expansions for sampling without replacement from finite populations. J. Multivariate Anal. 17 261-278.
-
(1985)
J. Multivariate Anal.
, vol.17
, pp. 261-278
-
-
Babu, J.G.1
Singh, K.2
-
2
-
-
21344464403
-
The Berry-Esseen bound for Student's statistic in the non-i.i.d. case
-
BENTKUS, V., BLOZNELIS, M. and GÖTZE, F. (1996). The Berry-Esseen bound for Student's statistic in the non-i.i.d. case. J. Theoret. Probab. 9 765-796.
-
(1996)
J. Theoret. Probab.
, vol.9
, pp. 765-796
-
-
Bentkus, V.1
Bloznelis, M.2
Götze, F.3
-
3
-
-
0038877700
-
The Berry-Esseen bound for Student's statistic
-
BENTKUS, V. and GÖTZE, F. (1996). The Berry-Esseen bound for Student's statistic. Ann. Probab. 24 491-503.
-
(1996)
Ann. Probab.
, vol.24
, pp. 491-503
-
-
Bentkus, V.1
Götze, F.2
-
4
-
-
0040644411
-
An Ecgeworth expansion for symmetric statistics
-
BENTKUS, V., GÖTZE, F. and VAN ZWET, W. R. (1997). An Ecgeworth expansion for symmetric statistics. Ann. Statist. 25 851-896.
-
(1997)
Ann. Statist.
, vol.25
, pp. 851-896
-
-
Bentkus, V.1
Götze, F.2
Van Zwet, W.R.3
-
5
-
-
0000931301
-
On the validity of the formal Edgeworth expansion
-
BHATTACHARYA, R. N. and GHOSH, J. K. (1978). On the validity of the formal Edgeworth expansion. Ann Statist. 6 434-451.
-
(1978)
Ann Statist.
, vol.6
, pp. 434-451
-
-
Bhattacharya, R.N.1
Ghosh, J.K.2
-
7
-
-
21344480022
-
The rate of convergence for multivariate sampling statistics
-
BOLTHAUSEN, E. and GÖTZE, F. (1993). The rate of convergence for multivariate sampling statistics. Ann Statist. 21 1692-1710.
-
(1993)
Ann Statist.
, vol.21
, pp. 1692-1710
-
-
Bolthausen, E.1
Götze, F.2
-
8
-
-
0009388119
-
Asymptotic expansion for the distribution of a statistic admitting a stochastic expansion I
-
CHIBISOV, D. M. (1980). Asymptotic expansion for the distribution of a statistic admitting a stochastic expansion I. Theory Probab. Appl. 25 732-744.
-
(1980)
Theory Probab. Appl.
, vol.25
, pp. 732-744
-
-
Chibisov, D.M.1
-
9
-
-
0009381329
-
The approximate distribution of Student's statistic
-
CHUNG, K. L. (1946). The approximate distribution of Student's statistic. Ann. Math. Statist. 17 447-465.
-
(1946)
Ann. Math. Statist.
, vol.17
, pp. 447-465
-
-
Chung, K.L.1
-
10
-
-
0000753064
-
Student's t-test under symmetry conditions
-
EFRON, B. (1969). Student's t-test under symmetry conditions. J. Amer. Statist. Assoc. 1278-1302.
-
(1969)
J. Amer. Statist. Assoc.
, pp. 1278-1302
-
-
Efron, B.1
-
11
-
-
0002491575
-
On the central limit theorem for samples from a finite population
-
ERDOS, P. and RÉNYI, A. (1959). On the central limit theorem for samples from a finite population. Publ. Math. Inst. Hungar. Acad. Sci. 4 49-61.
-
(1959)
Publ. Math. Inst. Hungar. Acad. Sci.
, vol.4
, pp. 49-61
-
-
Erdos, P.1
Rényi, A.2
-
13
-
-
0039378037
-
When is the Student t-statistic asymptotically standard normal?
-
GINE, E., GÖTZE, F. and MASON, D. M. (1997). When is the Student t-statistic asymptotically standard normal? Ann. Probab. 25 1514-1531.
-
(1997)
Ann. Probab.
, vol.25
, pp. 1514-1531
-
-
Gine, E.1
Götze, F.2
Mason, D.M.3
-
15
-
-
0000403640
-
Limiting distributions in simple random sampling from a finite population
-
HAJEK, J. (1960). Limiting distributions in simple random sampling from a finite population. Publ. Math. Inst. Hungar. Acad. Sci. 5 361-374.
-
(1960)
Publ. Math. Inst. Hungar. Acad. Sci.
, vol.5
, pp. 361-374
-
-
Hajek, J.1
-
16
-
-
0000784285
-
On the effect of random norming on the rate of convergence in the central limit theorem
-
HALL, P. (1988). On the effect of random norming on the rate of convergence in the central limit theorem. Ann. Probab. 16 1265-1280.
-
(1988)
Ann. Probab.
, vol.16
, pp. 1265-1280
-
-
Hall, P.1
-
17
-
-
0000210504
-
The Berry-Esseen bound for U-statistics I
-
(S. S. Gupta and J. O. Berger, eds.) Academic Press, New York
-
HELMERS, R. and VAN ZWET, W. R. The Berry-Esseen bound for U-statistics I. In Statistical Decision Theory and Related Topics (S. S. Gupta and J. O. Berger, eds.) 3 497-512. Academic Press, New York.
-
Statistical Decision Theory and Related Topics
, vol.3
, pp. 497-512
-
-
Helmers, R.1
Van Zwet, W.R.2
-
18
-
-
84947403595
-
Probability inequalities for sums of bounded random variables
-
HOEFFDING, W. (1963). Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58 13-30.
-
(1963)
J. Amer. Statist. Assoc.
, vol.58
, pp. 13-30
-
-
Hoeffding, W.1
-
19
-
-
0002664801
-
Sampling from a finite population: A remainder term estimate
-
HÖGLUND, T. (1978). Sampling from a finite population: a remainder term estimate. Scand. J. Statist. 5 69-71.
-
(1978)
Scand. J. Statist.
, vol.5
, pp. 69-71
-
-
Höglund, T.1
-
20
-
-
0000200653
-
An Edgeworth expansion for U-statistics based on samples from finite populations
-
KOKIC, P. N. and WEBER N. C. (1990). An Edgeworth expansion for U-statistics based on samples from finite populations. Ann. Probab. 18 390-404.
-
(1990)
Ann. Probab.
, vol.18
, pp. 390-404
-
-
Kokic, P.N.1
Weber, N.C.2
-
21
-
-
0001172340
-
Limit distributions of self-normalized sums
-
LOGAN, B., MALLOWS, C., RICE, S. and SHEPP, L. (1973). Limit distributions of self-normalized sums. Ann. Probab. 1 788-809.
-
(1973)
Ann. Probab.
, vol.1
, pp. 788-809
-
-
Logan, B.1
Mallows, C.2
Rice, S.3
Shepp, L.4
-
22
-
-
0009400520
-
Sampling from a finite set of random variables: The Berry-Esseen bound for the Studentized mean
-
(P. Mandl and M. Hǔsková, eds.) Charles Univ., Prague
-
PRAŠKOVA, Z. (1989). Sampling from a finite set of random variables: the Berry-Esseen bound for the Studentized mean. In Proceedings of the Fourth Prague Symposium on Asymptotic Statistics (P. Mandl and M. Hǔsková, eds.) 67-82. Charles Univ., Prague.
-
(1989)
Proceedings of the Fourth Prague Symposium on Asymptotic Statistics
, pp. 67-82
-
-
Praškova, Z.1
-
23
-
-
0041171600
-
Empirical Edgeworth expansions for symmetric statistics
-
PUTTER, H. and VAN ZWET, W. R. (1998). Empirical Edgeworth expansions for symmetric statistics. Ann. Statist. 26 1540-1569.
-
(1998)
Ann. Statist.
, vol.26
, pp. 1540-1569
-
-
Putter, H.1
Van Zwet, W.R.2
-
24
-
-
0000190539
-
Berry-Esseen bounds for finite-population t-statistics
-
RAO, C. R. and ZHAO, L. C. (1994). Berry-Esseen bounds for finite-population t-statistics. Statist. Probab. Lett. 21 409-416.
-
(1994)
Statist. Probab. Lett.
, vol.21
, pp. 409-416
-
-
Rao, C.R.1
Zhao, L.C.2
-
25
-
-
0009344037
-
The Berry-Esseen inequality for Student's statistic
-
SHARAKHMETOV, S. (1995). The Berry-Esseen inequality for Student's statistic. Uzbek. Mat. Zh. 2 101-112.
-
(1995)
Uzbek. Mat. Zh.
, vol.2
, pp. 101-112
-
-
Sharakhmetov, S.1
-
26
-
-
0001378132
-
On the Berry-Esseen bound for Student's statistic
-
Springer, Berlin
-
SLAVOVA, V. V. (1985). On the Berry-Esseen bound for Student's statistic. Lecture Notes in Math. 1155 335-390. Springer, Berlin.
-
(1985)
Lecture Notes in Math
, vol.1155
, pp. 335-390
-
-
Slavova, V.V.1
-
27
-
-
0000654995
-
A Berry-Esseen bound for symmetric statistics
-
VAN ZWET, W. R. (1984). A Berry-Esseen bound for symmetric statistics. Z. Wahrsch. Verw. Gebiete 66 425-440.
-
(1984)
Z. Wahrsch. Verw. Gebiete
, vol.66
, pp. 425-440
-
-
Van Zwet, W.R.1
-
28
-
-
0000625407
-
Normal approximation for finite-population U-statistics
-
ZHAO, L. C. and CHEN, X. R. (1990). Normal approximation for finite-population U-statistics. Acta Math. Appl. Sinica 6 263-272.
-
(1990)
Acta Math. Appl. Sinica
, vol.6
, pp. 263-272
-
-
Zhao, L.C.1
Chen, X.R.2
|