-
1
-
-
0025236024
-
Upper and lower bounds on the Rényi dimensions and the uniformity of multifractals
-
Beck C 1990 Upper and lower bounds on the Rényi dimensions and the uniformity of multifractals Physica D 41 67-78
-
(1990)
Physica D
, vol.41
, pp. 67-78
-
-
Beck, C.1
-
2
-
-
0009233806
-
Measure theoretic zero sets in infinite dimensional spaces and applications to differentiability of Lipschitz mappings
-
Christensen J 1973 Measure theoretic zero sets in infinite dimensional spaces and applications to differentiability of Lipschitz mappings Publ. Dép. Math. (Lyon) 10 29-39
-
(1973)
Publ. Dép. Math. (Lyon)
, vol.10
, pp. 29-39
-
-
Christensen, J.1
-
6
-
-
21444454260
-
Packing dimensions of projections and dimension profiles
-
Falconer K J and Howroyd J D 1997 Packing dimensions of projections and dimension profiles Math. Proc. Camb. Phil. Soc. 121 269-86
-
(1997)
Math. Proc. Camb. Phil. Soc.
, vol.121
, pp. 269-286
-
-
Falconer, K.J.1
Howroyd, J.D.2
-
8
-
-
21344448576
-
The packing dimension of projections and sections of measures
-
Falconer K J and Mattila P 1996 The packing dimension of projections and sections of measures Math. Proc. Camb. Phil. Soc. 119 695-713
-
(1996)
Math. Proc. Camb. Phil. Soc.
, vol.119
, pp. 695-713
-
-
Falconer, K.J.1
Mattila, P.2
-
9
-
-
85031592004
-
Convolutions and the geometry of multifractal measures
-
to appear
-
Falconer K J and O'Neil T Convolutions and the geometry of multifractal measures Math. Nachr. to appear
-
Math. Nachr.
-
-
Falconer, K.J.1
O'Neil, T.2
-
10
-
-
48749149528
-
Generalized dimensions of strange attractors
-
Grassberger P 1983 Generalized dimensions of strange attractors Phys. Lett. A 97 227-30
-
(1983)
Phys. Lett. A
, vol.97
, pp. 227-230
-
-
Grassberger, P.1
-
11
-
-
0346372923
-
The infinite number of generalized dimensions of fractals and strange attractors
-
Hentschel H G E and Procaccia I 1983 The infinite number of generalized dimensions of fractals and strange attractors Physica D 8 435-44
-
(1983)
Physica D
, vol.8
, pp. 435-444
-
-
Hentschel, H.G.E.1
Procaccia, I.2
-
13
-
-
0001464903
-
How projections affect the dimension spectrum of fractal measures
-
Hunt B R and Kaloshin V Yu 1997 How projections affect the dimension spectrum of fractal measures Nonlinearity 10 1031-46
-
(1997)
Nonlinearity
, vol.10
, pp. 1031-1046
-
-
Hunt, B.R.1
Kaloshin, V.Yu.2
-
14
-
-
84967728280
-
Prevalence: A translation-invariant almost every for infinite dimensional spaces
-
Hunt B R, Sauer T and Yorke J A 1992 Prevalence: a translation-invariant almost every for infinite dimensional spaces Bull. Am. Math. Soc. 27 217-38
-
(1992)
Bull. Am. Math. Soc.
, vol.27
, pp. 217-238
-
-
Hunt, B.R.1
Sauer, T.2
Yorke, J.A.3
-
15
-
-
0002051531
-
On the upper Minkowski dimension, the packing dimension, and orthogonal projections
-
Järvenpää M 1994 On the upper Minkowski dimension, the packing dimension, and orthogonal projections Ann. Acad. Sci. Fenn. Math. Diss. 99 1-34
-
(1994)
Ann. Acad. Sci. Fenn. Math. Diss.
, vol.99
, pp. 1-34
-
-
Järvenpää, M.1
-
16
-
-
0033478681
-
Hausdorff and packing dimensions, intersection measures, and similarities
-
to appear
-
Järvenpää M Hausdorff and packing dimensions, intersection measures, and similarities Ann. Acad. Sci. Fenn. Math. to appear
-
Ann. Acad. Sci. Fenn. Math.
-
-
Järvenpää, M.1
-
17
-
-
0009231873
-
Hausdorff and packing dimension, and sections of measures
-
Järvenpää M and Mattila P 1998 Hausdorff and packing dimension, and sections of measures Mathematika 45 55-77
-
(1998)
Mathematika
, vol.45
, pp. 55-77
-
-
Järvenpää, M.1
Mattila, P.2
-
19
-
-
84974040590
-
On hausdorff dimension of projections
-
Kaufmann R 1968 On Hausdorff dimension of projections Mathematika 15 153-5
-
(1968)
Mathematika
, vol.15
, pp. 153-155
-
-
Kaufmann, R.1
-
20
-
-
84963103615
-
Some fundamental geometrical properties of plane sets of fractional dimension
-
Marstrand M 1954 Some fundamental geometrical properties of plane sets of fractional dimension Proc. London Math. Soc. 4 257-302
-
(1954)
Proc. London Math. Soc.
, vol.4
, pp. 257-302
-
-
Marstrand, M.1
-
21
-
-
0000367680
-
Hausdorff dimension, orthogonal projections and intersections with planes
-
Mattila P 1975 Hausdorff dimension, orthogonal projections and intersections with planes Ann. Acad. Sci. Fenn. Math. 1 227-44
-
(1975)
Ann. Acad. Sci. Fenn. Math.
, vol.1
, pp. 227-244
-
-
Mattila, P.1
-
22
-
-
0003023698
-
Hausdorff dimension and capacities of intersection of sets in n-space
-
Mattila P 1984 Hausdorff dimension and capacities of intersection of sets in n-space Acta Math. 152 77-105
-
(1984)
Acta Math.
, vol.152
, pp. 77-105
-
-
Mattila, P.1
-
24
-
-
85027614017
-
A multifractal formalism
-
Olsen L 1995 A multifractal formalism Adv. Math. 116 82-195
-
(1995)
Adv. Math.
, vol.116
, pp. 82-195
-
-
Olsen, L.1
-
25
-
-
21144463609
-
On rigorous mathematical definitions of correlation dimension and generalized spectrum for dimensions
-
Pesin Ya 1993 On rigorous mathematical definitions of correlation dimension and generalized spectrum for dimensions J. Stat. Phys. 71 529-47
-
(1993)
J. Stat. Phys.
, vol.71
, pp. 529-547
-
-
Pesin, Ya.1
-
26
-
-
0031490957
-
Are the dimensions of a set and its image equal under typical smooth functions?
-
Sauer T D and Yorke J A 1997 Are the dimensions of a set and its image equal under typical smooth functions? Ergod. Theory Dynam. Syst. 17 941-56
-
(1997)
Ergod. Theory Dynam. Syst.
, vol.17
, pp. 941-956
-
-
Sauer, T.D.1
Yorke, J.A.2
|