-
3
-
-
0009322175
-
Remarks on entropy
-
in Hungarian with English summary
-
Balatoni J and Rényi A 1956 Remarks on entropy Publ. Math. Inst. Hung. Acad. Sci. 1 9-40 (in Hungarian with English summary) Balatoni J and Rényi A 1976 Selected Papers of Alfréd Rényi vol 1 Budapest: Akadémiai Kiadó) pp 558-86 (English translation)
-
(1956)
Publ. Math. Inst. Hung. Acad. Sci.
, vol.1
, pp. 9-40
-
-
Balatoni, J.1
Rényi, A.2
-
4
-
-
0012765397
-
-
Budapest: Akadémiai Kiadó (English translation)
-
Balatoni J and Rényi A 1956 Remarks on entropy Publ. Math. Inst. Hung. Acad. Sci. 1 9-40 (in Hungarian with English summary) Balatoni J and Rényi A 1976 Selected Papers of Alfréd Rényi vol 1 Budapest: Akadémiai Kiadó) pp 558-86 (English translation)
-
(1976)
Selected Papers of Alfréd Rényi
, vol.1
, pp. 558-586
-
-
Balatoni, J.1
Rényi, A.2
-
5
-
-
0002248505
-
On the pointwise dimension of hyperbolic measures: A proof of the Eckmann-Ruelle conjecture
-
Barreira L, Pesin Ya and Schmeling J 1996 On the pointwise dimension of hyperbolic measures: a proof of the Eckmann-Ruelle conjecture Elec. Res. Ann. Am. Math. Soc. 2 69-72 Barreira L, Pesin Ya and Schmeling J Dimension of hyperbolic measures: a proof of the Eckmann-Ruelle conjecture Preprint
-
(1996)
Elec. Res. Ann. Am. Math. Soc.
, vol.2
, pp. 69-72
-
-
Barreira, L.1
Pesin, Ya.2
Schmeling, J.3
-
7
-
-
0025236024
-
Upper and lower bounds on the Renyi dimensions and the uniformity of multifractals
-
Beck C 1990 Upper and lower bounds on the Renyi dimensions and the uniformity of multifractals Physica D 41 67-78
-
(1990)
Physica D
, vol.41
, pp. 67-78
-
-
Beck, C.1
-
8
-
-
0013501719
-
The ergodic theory of Axiom-A flows
-
Bowen R and Ruelle D 1975 The ergodic theory of Axiom-A flows Inv. Math. 29 181-202
-
(1975)
Inv. Math.
, vol.29
, pp. 181-202
-
-
Bowen, R.1
Ruelle, D.2
-
10
-
-
44049118235
-
Multifractal decomposition of Moran fractals
-
Cawley R and Mauldin D 1992 Multifractal decomposition of Moran fractals Adv. Math. 92 196-236
-
(1992)
Adv. Math.
, vol.92
, pp. 196-236
-
-
Cawley, R.1
Mauldin, D.2
-
12
-
-
0001743732
-
Some results on the behavior and estimation of the fractal dimension of distributions on attractors
-
Cutler C D 1991 Some results on the behavior and estimation of the fractal dimension of distributions on attractors J. Stat. Phys. 62 651-708
-
(1991)
J. Stat. Phys.
, vol.62
, pp. 651-708
-
-
Cutler, C.D.1
-
13
-
-
0001715022
-
Strong and weak duality principles for fractal dimension in Euclidean space
-
Cutler C D 1995 Strong and weak duality principles for fractal dimension in Euclidean space Math. Proc. Camb. Phil. Soc. 118 393-410
-
(1995)
Math. Proc. Camb. Phil. Soc.
, vol.118
, pp. 393-410
-
-
Cutler, C.D.1
-
14
-
-
43949165886
-
Estimating correlation dimension from a chaotic time series: When does plateau onset occur?
-
Ding M, Grebogi C, Ott E, Sauer T and Yorke J A 1993 Estimating correlation dimension from a chaotic time series: when does plateau onset occur? Physica D 69 404-24
-
(1993)
Physica D
, vol.69
, pp. 404-424
-
-
Ding, M.1
Grebogi, C.2
Ott, E.3
Sauer, T.4
Yorke, J.A.5
-
15
-
-
35949018382
-
Ergodic theory of chaos and strange attractors
-
Eckmann J-P and Ruelle D 1985 Ergodic theory of chaos and strange attractors Rev. Mod. Phys. 57 617-56
-
(1985)
Rev. Mod. Phys.
, vol.57
, pp. 617-656
-
-
Eckmann, J.-P.1
Ruelle, D.2
-
17
-
-
21844493529
-
Projection theorems for box and packing dimensions
-
Falconer K and Howroyd J D 1996 Projection theorems for box and packing dimensions Math. Proc Camb. Phil. Soc. 119 287-95
-
(1996)
Math. Proc Camb. Phil. Soc.
, vol.119
, pp. 287-295
-
-
Falconer, K.1
Howroyd, J.D.2
-
18
-
-
21344448576
-
The packing dimension of projections and sections of measures
-
Falconer K and Mattila P 1996 The packing dimension of projections and sections of measures Math. Proc. Camb. Phil. Soc. 119 695-713
-
(1996)
Math. Proc. Camb. Phil. Soc.
, vol.119
, pp. 695-713
-
-
Falconer, K.1
Mattila, P.2
-
19
-
-
0040335709
-
Information dimension and the probabilistic structure of chaos
-
Farmer J D 1982 Information dimension and the probabilistic structure of chaos Z. Naturforsch. a 37 1304-25
-
(1982)
Z. Naturforsch. A
, vol.37
, pp. 1304-1325
-
-
Farmer, J.D.1
-
20
-
-
48749145669
-
The dimension of chaotic attractors
-
Farmer J D, Ott E and Yorke J A 1983 The dimension of chaotic attractors Physica D 7 153-80
-
(1983)
Physica D
, vol.7
, pp. 153-180
-
-
Farmer, J.D.1
Ott, E.2
Yorke, J.A.3
-
22
-
-
0002618708
-
Potential d'équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions
-
Frostman O 1935 Potential d'équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions Meddel. Lunds Univ. Math. Sem. 3 1-118
-
(1935)
Meddel. Lunds Univ. Math. Sem.
, vol.3
, pp. 1-118
-
-
Frostman, O.1
-
23
-
-
4243444069
-
Hausdorff dimension and probability distributions
-
Gács P 1973 Hausdorff dimension and probability distributions Periodica Mathematica Hungarica 3 59-71
-
(1973)
Periodica Mathematica Hungarica
, vol.3
, pp. 59-71
-
-
Gács, P.1
-
24
-
-
48749149528
-
Generalized dimension of strange attractors
-
Grassberger P 1983 Generalized dimension of strange attractors Phys. Lett. 97A 227-31
-
(1983)
Phys. Lett.
, vol.97 A
, pp. 227-231
-
-
Grassberger, P.1
-
26
-
-
40749093037
-
Measuring the strangeness of strange attractors
-
Grassberger P and Procaccia I Measuring the strangeness of strange attractors Physica D 7 189-208
-
Physica D
, vol.7
, pp. 189-208
-
-
Grassberger, P.1
Procaccia, I.2
-
27
-
-
3342916075
-
Fractal measures and their singularities: The characterization of strange sets
-
Halsey T C, Jensen M H, Kadanoff L P, Procaccia I and Shraiman B I 1986 Fractal measures and their singularities: the characterization of strange sets Phys. Rev. A 33 1141-51
-
(1986)
Phys. Rev. A
, vol.33
, pp. 1141-1151
-
-
Halsey, T.C.1
Jensen, M.H.2
Kadanoff, L.P.3
Procaccia, I.4
Shraiman, B.I.5
-
28
-
-
0346372923
-
The infinite number of generalized dimensions of fractals and strange attractors
-
Hentschel H G and Procaccia I 1983 The infinite number of generalized dimensions of fractals and strange attractors Physica D 8 435-44
-
(1983)
Physica D
, vol.8
, pp. 435-444
-
-
Hentschel, H.G.1
Procaccia, I.2
-
30
-
-
84967728280
-
Prevalence: A translation-invariant almost every for infinite dimensional spaces
-
Hunt B R, Sauer T and Yorke J A 1992 Prevalence: a translation-invariant almost every for infinite dimensional spaces Bull. Am. Math. Soc. 27 217-38 Hunt B R, Sauer T and Yorke J A 1993 Prevalence: an addendum Bull. Am. Math. Soc. 28 306-7
-
(1992)
Bull. Am. Math. Soc.
, vol.27
, pp. 217-238
-
-
Hunt, B.R.1
Sauer, T.2
Yorke, J.A.3
-
31
-
-
84967782914
-
Prevalence: An addendum
-
Hunt B R, Sauer T and Yorke J A 1992 Prevalence: a translation-invariant almost every for infinite dimensional spaces Bull. Am. Math. Soc. 27 217-38 Hunt B R, Sauer T and Yorke J A 1993 Prevalence: an addendum Bull. Am. Math. Soc. 28 306-7
-
(1993)
Bull. Am. Math. Soc.
, vol.28
, pp. 306-307
-
-
Hunt, B.R.1
Sauer, T.2
Yorke, J.A.3
-
32
-
-
0002051531
-
On the upper Minkowski dimension, the packing dimension, and orthogonal projections
-
Järvenpää M 1994 On the upper Minkowski dimension, the packing dimension, and orthogonal projections Ann. Acad. Sci. Fen. AI Math. Diss. 99 1-34
-
(1994)
Ann. Acad. Sci. Fen. AI Math. Diss.
, vol.99
, pp. 1-34
-
-
Järvenpää, M.1
-
36
-
-
84974040590
-
On Hausdorff dimension of projections
-
Kaufmann R 1968 On Hausdorff dimension of projections Mathematika 15 153-5
-
(1968)
Mathematika
, vol.15
, pp. 153-155
-
-
Kaufmann, R.1
-
37
-
-
38249016198
-
Dimension spectra and a mathematical model for phase transition
-
Lopes A O 1990 Dimension spectra and a mathematical model for phase transition Adv. Appl. Math. 11 475-502
-
(1990)
Adv. Appl. Math.
, vol.11
, pp. 475-502
-
-
Lopes, A.O.1
-
38
-
-
84963103615
-
Some fundamental geometrical properties of plane sets of fractional dimension
-
Marstrand J M Some fundamental geometrical properties of plane sets of fractional dimension Proc. London Math. Soc. 4 257-302
-
Proc. London Math. Soc.
, vol.4
, pp. 257-302
-
-
Marstrand, J.M.1
-
39
-
-
0000367680
-
Hausdorff dimension, orthogonal projections and intersections with planes
-
Mattila P 1975 Hausdorff dimension, orthogonal projections and intersections with planes Ann. Acad. Sci. Fennicae A 1 227-44
-
(1975)
Ann. Acad. Sci. Fennicae A
, vol.1
, pp. 227-244
-
-
Mattila, P.1
-
40
-
-
0001441339
-
Integralgeometric properties of capacities
-
Mattila P 1981 Integralgeometric properties of capacities Trans. Am. Math. Soc. 266 539-54
-
(1981)
Trans. Am. Math. Soc.
, vol.266
, pp. 539-554
-
-
Mattila, P.1
-
42
-
-
33845333666
-
Is the dimension of chaotic attractors invariant under coordinate changes?
-
Ott E, Withers W D and Yorke J A 1984 Is the dimension of chaotic attractors invariant under coordinate changes? J. Stat. Phys. 36 687-97
-
(1984)
J. Stat. Phys.
, vol.36
, pp. 687-697
-
-
Ott, E.1
Withers, W.D.2
Yorke, J.A.3
-
43
-
-
85027614017
-
A multifractal formalism
-
Olsen L 1995 A multifractal formalism Adv. Math. 116 82-196
-
(1995)
Adv. Math.
, vol.116
, pp. 82-196
-
-
Olsen, L.1
-
44
-
-
21444435010
-
Multifractal dimensions of product measures
-
Olsen L 1996 Multifractal dimensions of product measures Math. Proc. Camb. Phil. Soc. 120 709-34
-
(1996)
Math. Proc. Camb. Phil. Soc.
, vol.120
, pp. 709-734
-
-
Olsen, L.1
-
46
-
-
21144463609
-
On rigorous mathematical definitions of correlation dimension and generalized spectrum for dimensions
-
Pesin Ya 1993 On rigorous mathematical definitions of correlation dimension and generalized spectrum for dimensions J. Stat. Phys. 71 529-47
-
(1993)
J. Stat. Phys.
, vol.71
, pp. 529-547
-
-
Pesin, Ya.1
-
47
-
-
21744460729
-
The multifractal analysis of Gibbs measures: Motivation, mathematical foundation, and examples
-
Pesin Ya and Weiss H 1997 The multifractal analysis of Gibbs measures: motivation, mathematical foundation, and examples Chaos 7 89-106
-
(1997)
Chaos
, vol.7
, pp. 89-106
-
-
Pesin, Ya.1
Weiss, H.2
-
48
-
-
0009321553
-
The dimension spectrum of Axiom A attractors
-
Porzio A 1990 The dimension spectrum of Axiom A attractors J. Stat. Phys. 58 923-37
-
(1990)
J. Stat. Phys.
, vol.58
, pp. 923-937
-
-
Porzio, A.1
-
49
-
-
84974252535
-
The singularity spectrum f(α) for cookie-cutters
-
Rand D 1989 The singularity spectrum f(α) for cookie-cutters Ergod. Theor. Dynam. Syst. 9 527-41
-
(1989)
Ergod. Theor. Dynam. Syst.
, vol.9
, pp. 527-541
-
-
Rand, D.1
-
51
-
-
58149362177
-
An improved multifractal formalism and self-affine measures
-
Riedi R H 1995 An improved multifractal formalism and self-affine measures J. Math. Anal. Appl. 189 462-90
-
(1995)
J. Math. Anal. Appl.
, vol.189
, pp. 462-490
-
-
Riedi, R.H.1
-
52
-
-
84958270085
-
Are the dimensions of a set and its image equal under typical smooth functions?
-
at press
-
Sauer T and Yorke J A Are the dimensions of a set and its image equal under typical smooth functions? Ergod. Theor. Dynam. Syst. at press
-
Ergod. Theor. Dynam. Syst.
-
-
Sauer, T.1
Yorke, J.A.2
-
54
-
-
21844511743
-
Dimension spectrum of Axiom A diffeomorphisms. II. Gibbs measures
-
Simpelaere D 1994 Dimension spectrum of Axiom A diffeomorphisms. II. Gibbs measures J. Stat. Phys. 76 1359-75
-
(1994)
J. Stat. Phys.
, vol.76
, pp. 1359-1375
-
-
Simpelaere, D.1
-
55
-
-
84956071330
-
Gibbs measures in ergodic theory
-
Sinai Ya G 1972 Gibbs measures in ergodic theory Russ. Math. Surv. 27 21-70
-
(1972)
Russ. Math. Surv.
, vol.27
, pp. 21-70
-
-
Sinai, Ya.G.1
-
56
-
-
0000493711
-
Self-similar measures and their Fourier transforms III
-
Strichartz R S 1993 Self-similar measures and their Fourier transforms III Indiana Univ. Math. J. 42 367-411
-
(1993)
Indiana Univ. Math. J.
, vol.42
, pp. 367-411
-
-
Strichartz, R.S.1
-
57
-
-
0001295575
-
Differentiable manifolds
-
Whitney H 1936 Differentiable manifolds Ann. Math. 37 645-80
-
(1936)
Ann. Math.
, vol.37
, pp. 645-680
-
-
Whitney, H.1
-
58
-
-
84956256298
-
Dimension, entropy and Lyapunov exponents
-
Young L-S 1982 Dimension, entropy and Lyapunov exponents Ergod. Theor. Dynam. Syst. 2 109-24
-
(1982)
Ergod. Theor. Dynam. Syst.
, vol.2
, pp. 109-124
-
-
Young, L.-S.1
|