메뉴 건너뛰기




Volumn 10, Issue 5, 1997, Pages 1031-1046

How projections affect the dimension spectrum of fractal measures

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0001464903     PISSN: 09517715     EISSN: None     Source Type: Journal    
DOI: 10.1088/0951-7715/10/5/002     Document Type: Article
Times cited : (107)

References (58)
  • 3
    • 0009322175 scopus 로고
    • Remarks on entropy
    • in Hungarian with English summary
    • Balatoni J and Rényi A 1956 Remarks on entropy Publ. Math. Inst. Hung. Acad. Sci. 1 9-40 (in Hungarian with English summary) Balatoni J and Rényi A 1976 Selected Papers of Alfréd Rényi vol 1 Budapest: Akadémiai Kiadó) pp 558-86 (English translation)
    • (1956) Publ. Math. Inst. Hung. Acad. Sci. , vol.1 , pp. 9-40
    • Balatoni, J.1    Rényi, A.2
  • 4
    • 0012765397 scopus 로고
    • Budapest: Akadémiai Kiadó (English translation)
    • Balatoni J and Rényi A 1956 Remarks on entropy Publ. Math. Inst. Hung. Acad. Sci. 1 9-40 (in Hungarian with English summary) Balatoni J and Rényi A 1976 Selected Papers of Alfréd Rényi vol 1 Budapest: Akadémiai Kiadó) pp 558-86 (English translation)
    • (1976) Selected Papers of Alfréd Rényi , vol.1 , pp. 558-586
    • Balatoni, J.1    Rényi, A.2
  • 5
    • 0002248505 scopus 로고    scopus 로고
    • On the pointwise dimension of hyperbolic measures: A proof of the Eckmann-Ruelle conjecture
    • Barreira L, Pesin Ya and Schmeling J 1996 On the pointwise dimension of hyperbolic measures: a proof of the Eckmann-Ruelle conjecture Elec. Res. Ann. Am. Math. Soc. 2 69-72 Barreira L, Pesin Ya and Schmeling J Dimension of hyperbolic measures: a proof of the Eckmann-Ruelle conjecture Preprint
    • (1996) Elec. Res. Ann. Am. Math. Soc. , vol.2 , pp. 69-72
    • Barreira, L.1    Pesin, Ya.2    Schmeling, J.3
  • 7
    • 0025236024 scopus 로고
    • Upper and lower bounds on the Renyi dimensions and the uniformity of multifractals
    • Beck C 1990 Upper and lower bounds on the Renyi dimensions and the uniformity of multifractals Physica D 41 67-78
    • (1990) Physica D , vol.41 , pp. 67-78
    • Beck, C.1
  • 8
    • 0013501719 scopus 로고
    • The ergodic theory of Axiom-A flows
    • Bowen R and Ruelle D 1975 The ergodic theory of Axiom-A flows Inv. Math. 29 181-202
    • (1975) Inv. Math. , vol.29 , pp. 181-202
    • Bowen, R.1    Ruelle, D.2
  • 9
    • 0000671226 scopus 로고
    • On the multifractal analysis of measures
    • Brown G, Michon G and Peyrière J 1992 On the multifractal analysis of measures J. Stat. Phys. 66 775-90
    • (1992) J. Stat. Phys. , vol.66 , pp. 775-790
    • Brown, G.1    Michon, G.2    Peyrière, J.3
  • 10
    • 44049118235 scopus 로고
    • Multifractal decomposition of Moran fractals
    • Cawley R and Mauldin D 1992 Multifractal decomposition of Moran fractals Adv. Math. 92 196-236
    • (1992) Adv. Math. , vol.92 , pp. 196-236
    • Cawley, R.1    Mauldin, D.2
  • 11
    • 0001141522 scopus 로고    scopus 로고
    • The dimension spectrum of some dynamical systems
    • Collet P, Lebowitz J L and Porzio A The dimension spectrum of some dynamical systems J. Stat. Phys. 47 609-44
    • J. Stat. Phys. , vol.47 , pp. 609-644
    • Collet, P.1    Lebowitz, J.L.2    Porzio, A.3
  • 12
    • 0001743732 scopus 로고
    • Some results on the behavior and estimation of the fractal dimension of distributions on attractors
    • Cutler C D 1991 Some results on the behavior and estimation of the fractal dimension of distributions on attractors J. Stat. Phys. 62 651-708
    • (1991) J. Stat. Phys. , vol.62 , pp. 651-708
    • Cutler, C.D.1
  • 13
    • 0001715022 scopus 로고
    • Strong and weak duality principles for fractal dimension in Euclidean space
    • Cutler C D 1995 Strong and weak duality principles for fractal dimension in Euclidean space Math. Proc. Camb. Phil. Soc. 118 393-410
    • (1995) Math. Proc. Camb. Phil. Soc. , vol.118 , pp. 393-410
    • Cutler, C.D.1
  • 14
    • 43949165886 scopus 로고
    • Estimating correlation dimension from a chaotic time series: When does plateau onset occur?
    • Ding M, Grebogi C, Ott E, Sauer T and Yorke J A 1993 Estimating correlation dimension from a chaotic time series: when does plateau onset occur? Physica D 69 404-24
    • (1993) Physica D , vol.69 , pp. 404-424
    • Ding, M.1    Grebogi, C.2    Ott, E.3    Sauer, T.4    Yorke, J.A.5
  • 15
    • 35949018382 scopus 로고
    • Ergodic theory of chaos and strange attractors
    • Eckmann J-P and Ruelle D 1985 Ergodic theory of chaos and strange attractors Rev. Mod. Phys. 57 617-56
    • (1985) Rev. Mod. Phys. , vol.57 , pp. 617-656
    • Eckmann, J.-P.1    Ruelle, D.2
  • 17
    • 21844493529 scopus 로고    scopus 로고
    • Projection theorems for box and packing dimensions
    • Falconer K and Howroyd J D 1996 Projection theorems for box and packing dimensions Math. Proc Camb. Phil. Soc. 119 287-95
    • (1996) Math. Proc Camb. Phil. Soc. , vol.119 , pp. 287-295
    • Falconer, K.1    Howroyd, J.D.2
  • 18
    • 21344448576 scopus 로고    scopus 로고
    • The packing dimension of projections and sections of measures
    • Falconer K and Mattila P 1996 The packing dimension of projections and sections of measures Math. Proc. Camb. Phil. Soc. 119 695-713
    • (1996) Math. Proc. Camb. Phil. Soc. , vol.119 , pp. 695-713
    • Falconer, K.1    Mattila, P.2
  • 19
    • 0040335709 scopus 로고
    • Information dimension and the probabilistic structure of chaos
    • Farmer J D 1982 Information dimension and the probabilistic structure of chaos Z. Naturforsch. a 37 1304-25
    • (1982) Z. Naturforsch. A , vol.37 , pp. 1304-1325
    • Farmer, J.D.1
  • 20
    • 48749145669 scopus 로고
    • The dimension of chaotic attractors
    • Farmer J D, Ott E and Yorke J A 1983 The dimension of chaotic attractors Physica D 7 153-80
    • (1983) Physica D , vol.7 , pp. 153-180
    • Farmer, J.D.1    Ott, E.2    Yorke, J.A.3
  • 22
    • 0002618708 scopus 로고
    • Potential d'équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions
    • Frostman O 1935 Potential d'équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions Meddel. Lunds Univ. Math. Sem. 3 1-118
    • (1935) Meddel. Lunds Univ. Math. Sem. , vol.3 , pp. 1-118
    • Frostman, O.1
  • 23
    • 4243444069 scopus 로고
    • Hausdorff dimension and probability distributions
    • Gács P 1973 Hausdorff dimension and probability distributions Periodica Mathematica Hungarica 3 59-71
    • (1973) Periodica Mathematica Hungarica , vol.3 , pp. 59-71
    • Gács, P.1
  • 24
    • 48749149528 scopus 로고
    • Generalized dimension of strange attractors
    • Grassberger P 1983 Generalized dimension of strange attractors Phys. Lett. 97A 227-31
    • (1983) Phys. Lett. , vol.97 A , pp. 227-231
    • Grassberger, P.1
  • 25
    • 33646981873 scopus 로고
    • Characterization of strange attractors
    • Grassberger P and Procaccia I 1983 Characterization of strange attractors Phys. Rev. Lett. 50 346-9
    • (1983) Phys. Rev. Lett. , vol.50 , pp. 346-349
    • Grassberger, P.1    Procaccia, I.2
  • 26
    • 40749093037 scopus 로고    scopus 로고
    • Measuring the strangeness of strange attractors
    • Grassberger P and Procaccia I Measuring the strangeness of strange attractors Physica D 7 189-208
    • Physica D , vol.7 , pp. 189-208
    • Grassberger, P.1    Procaccia, I.2
  • 28
    • 0346372923 scopus 로고
    • The infinite number of generalized dimensions of fractals and strange attractors
    • Hentschel H G and Procaccia I 1983 The infinite number of generalized dimensions of fractals and strange attractors Physica D 8 435-44
    • (1983) Physica D , vol.8 , pp. 435-444
    • Hentschel, H.G.1    Procaccia, I.2
  • 30
    • 84967728280 scopus 로고
    • Prevalence: A translation-invariant almost every for infinite dimensional spaces
    • Hunt B R, Sauer T and Yorke J A 1992 Prevalence: a translation-invariant almost every for infinite dimensional spaces Bull. Am. Math. Soc. 27 217-38 Hunt B R, Sauer T and Yorke J A 1993 Prevalence: an addendum Bull. Am. Math. Soc. 28 306-7
    • (1992) Bull. Am. Math. Soc. , vol.27 , pp. 217-238
    • Hunt, B.R.1    Sauer, T.2    Yorke, J.A.3
  • 31
    • 84967782914 scopus 로고
    • Prevalence: An addendum
    • Hunt B R, Sauer T and Yorke J A 1992 Prevalence: a translation-invariant almost every for infinite dimensional spaces Bull. Am. Math. Soc. 27 217-38 Hunt B R, Sauer T and Yorke J A 1993 Prevalence: an addendum Bull. Am. Math. Soc. 28 306-7
    • (1993) Bull. Am. Math. Soc. , vol.28 , pp. 306-307
    • Hunt, B.R.1    Sauer, T.2    Yorke, J.A.3
  • 32
    • 0002051531 scopus 로고
    • On the upper Minkowski dimension, the packing dimension, and orthogonal projections
    • Järvenpää M 1994 On the upper Minkowski dimension, the packing dimension, and orthogonal projections Ann. Acad. Sci. Fen. AI Math. Diss. 99 1-34
    • (1994) Ann. Acad. Sci. Fen. AI Math. Diss. , vol.99 , pp. 1-34
    • Järvenpää, M.1
  • 36
    • 84974040590 scopus 로고
    • On Hausdorff dimension of projections
    • Kaufmann R 1968 On Hausdorff dimension of projections Mathematika 15 153-5
    • (1968) Mathematika , vol.15 , pp. 153-155
    • Kaufmann, R.1
  • 37
    • 38249016198 scopus 로고
    • Dimension spectra and a mathematical model for phase transition
    • Lopes A O 1990 Dimension spectra and a mathematical model for phase transition Adv. Appl. Math. 11 475-502
    • (1990) Adv. Appl. Math. , vol.11 , pp. 475-502
    • Lopes, A.O.1
  • 38
    • 84963103615 scopus 로고    scopus 로고
    • Some fundamental geometrical properties of plane sets of fractional dimension
    • Marstrand J M Some fundamental geometrical properties of plane sets of fractional dimension Proc. London Math. Soc. 4 257-302
    • Proc. London Math. Soc. , vol.4 , pp. 257-302
    • Marstrand, J.M.1
  • 39
    • 0000367680 scopus 로고
    • Hausdorff dimension, orthogonal projections and intersections with planes
    • Mattila P 1975 Hausdorff dimension, orthogonal projections and intersections with planes Ann. Acad. Sci. Fennicae A 1 227-44
    • (1975) Ann. Acad. Sci. Fennicae A , vol.1 , pp. 227-244
    • Mattila, P.1
  • 40
    • 0001441339 scopus 로고
    • Integralgeometric properties of capacities
    • Mattila P 1981 Integralgeometric properties of capacities Trans. Am. Math. Soc. 266 539-54
    • (1981) Trans. Am. Math. Soc. , vol.266 , pp. 539-554
    • Mattila, P.1
  • 42
    • 33845333666 scopus 로고
    • Is the dimension of chaotic attractors invariant under coordinate changes?
    • Ott E, Withers W D and Yorke J A 1984 Is the dimension of chaotic attractors invariant under coordinate changes? J. Stat. Phys. 36 687-97
    • (1984) J. Stat. Phys. , vol.36 , pp. 687-697
    • Ott, E.1    Withers, W.D.2    Yorke, J.A.3
  • 43
    • 85027614017 scopus 로고
    • A multifractal formalism
    • Olsen L 1995 A multifractal formalism Adv. Math. 116 82-196
    • (1995) Adv. Math. , vol.116 , pp. 82-196
    • Olsen, L.1
  • 44
    • 21444435010 scopus 로고    scopus 로고
    • Multifractal dimensions of product measures
    • Olsen L 1996 Multifractal dimensions of product measures Math. Proc. Camb. Phil. Soc. 120 709-34
    • (1996) Math. Proc. Camb. Phil. Soc. , vol.120 , pp. 709-734
    • Olsen, L.1
  • 46
    • 21144463609 scopus 로고
    • On rigorous mathematical definitions of correlation dimension and generalized spectrum for dimensions
    • Pesin Ya 1993 On rigorous mathematical definitions of correlation dimension and generalized spectrum for dimensions J. Stat. Phys. 71 529-47
    • (1993) J. Stat. Phys. , vol.71 , pp. 529-547
    • Pesin, Ya.1
  • 47
    • 21744460729 scopus 로고    scopus 로고
    • The multifractal analysis of Gibbs measures: Motivation, mathematical foundation, and examples
    • Pesin Ya and Weiss H 1997 The multifractal analysis of Gibbs measures: motivation, mathematical foundation, and examples Chaos 7 89-106
    • (1997) Chaos , vol.7 , pp. 89-106
    • Pesin, Ya.1    Weiss, H.2
  • 48
    • 0009321553 scopus 로고
    • The dimension spectrum of Axiom A attractors
    • Porzio A 1990 The dimension spectrum of Axiom A attractors J. Stat. Phys. 58 923-37
    • (1990) J. Stat. Phys. , vol.58 , pp. 923-937
    • Porzio, A.1
  • 49
    • 84974252535 scopus 로고
    • The singularity spectrum f(α) for cookie-cutters
    • Rand D 1989 The singularity spectrum f(α) for cookie-cutters Ergod. Theor. Dynam. Syst. 9 527-41
    • (1989) Ergod. Theor. Dynam. Syst. , vol.9 , pp. 527-541
    • Rand, D.1
  • 51
    • 58149362177 scopus 로고
    • An improved multifractal formalism and self-affine measures
    • Riedi R H 1995 An improved multifractal formalism and self-affine measures J. Math. Anal. Appl. 189 462-90
    • (1995) J. Math. Anal. Appl. , vol.189 , pp. 462-490
    • Riedi, R.H.1
  • 52
    • 84958270085 scopus 로고    scopus 로고
    • Are the dimensions of a set and its image equal under typical smooth functions?
    • at press
    • Sauer T and Yorke J A Are the dimensions of a set and its image equal under typical smooth functions? Ergod. Theor. Dynam. Syst. at press
    • Ergod. Theor. Dynam. Syst.
    • Sauer, T.1    Yorke, J.A.2
  • 54
    • 21844511743 scopus 로고
    • Dimension spectrum of Axiom A diffeomorphisms. II. Gibbs measures
    • Simpelaere D 1994 Dimension spectrum of Axiom A diffeomorphisms. II. Gibbs measures J. Stat. Phys. 76 1359-75
    • (1994) J. Stat. Phys. , vol.76 , pp. 1359-1375
    • Simpelaere, D.1
  • 55
    • 84956071330 scopus 로고
    • Gibbs measures in ergodic theory
    • Sinai Ya G 1972 Gibbs measures in ergodic theory Russ. Math. Surv. 27 21-70
    • (1972) Russ. Math. Surv. , vol.27 , pp. 21-70
    • Sinai, Ya.G.1
  • 56
    • 0000493711 scopus 로고
    • Self-similar measures and their Fourier transforms III
    • Strichartz R S 1993 Self-similar measures and their Fourier transforms III Indiana Univ. Math. J. 42 367-411
    • (1993) Indiana Univ. Math. J. , vol.42 , pp. 367-411
    • Strichartz, R.S.1
  • 57
    • 0001295575 scopus 로고
    • Differentiable manifolds
    • Whitney H 1936 Differentiable manifolds Ann. Math. 37 645-80
    • (1936) Ann. Math. , vol.37 , pp. 645-680
    • Whitney, H.1
  • 58
    • 84956256298 scopus 로고
    • Dimension, entropy and Lyapunov exponents
    • Young L-S 1982 Dimension, entropy and Lyapunov exponents Ergod. Theor. Dynam. Syst. 2 109-24
    • (1982) Ergod. Theor. Dynam. Syst. , vol.2 , pp. 109-124
    • Young, L.-S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.