-
1
-
-
0003880161
-
-
Garland, New York, London
-
a) B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, J. D. Watson, Molecular Biology of the Cell, 3rd ed., Garland, New York, London, 1994;
-
(1994)
Molecular Biology of the Cell, 3rd Ed.
-
-
Alberts, B.1
Bray, D.2
Lewis, J.3
Raff, M.4
Roberts, K.5
Watson, J.D.6
-
3
-
-
0028155981
-
-
a) A. Marsh, E. G. Nolen, K. M. Gardinier, J.-M. Lehn, Tetrahedron Lett. 1994, 397-400;
-
(1994)
Tetrahedron Lett.
, pp. 397-400
-
-
Marsh, A.1
Nolen, E.G.2
Gardinier, K.M.3
Lehn, J.-M.4
-
4
-
-
37049089953
-
-
b) N. Kimizuka, S. Fujikawa, H. Kuwahara, T. Kunitake, A. Marsh, J.-M. Lehn, J. Chem. Soc. Chem. Commun. 1995, 2103-2104;
-
(1995)
J. Chem. Soc. Chem. Commun.
, pp. 2103-2104
-
-
Kimizuka, N.1
Fujikawa, S.2
Kuwahara, H.3
Kunitake, T.4
Marsh, A.5
Lehn, J.-M.6
-
7
-
-
0003751509
-
-
Freeman, New York
-
C. R. Cantor, P. R. Schimmel, in Biophysical Chemistry, Part II, Freeman, New York, 1980.
-
(1980)
Biophysical Chemistry, Part II
-
-
Cantor, C.R.1
Schimmel, P.R.2
-
8
-
-
37049067579
-
-
and references therein
-
a) L. Jullien, J. Canceill, L. Lacombe, J-M. Lehn, J. Chem. Soc. Perkin Trans. 2 1994, 989-1002, and references therein;
-
(1994)
J. Chem. Soc. Perkin Trans. 2
, pp. 989-1002
-
-
Jullien, L.1
Canceill, J.2
Lacombe, L.3
Lehn, J.-M.4
-
9
-
-
0342809470
-
-
b) K. Takeo, H. Mitoh, K. Uemura, Carbohydr. Res. 1989, 187, 203-221.
-
(1989)
Carbohydr. Res.
, vol.187
, pp. 203-221
-
-
Takeo, K.1
Mitoh, H.2
Uemura, K.3
-
10
-
-
0006438170
-
-
Electrospray experiments suggest that 1β remains monomeric in a mixture of water and acetonitrile, see: M. Eddaoudi, A. W. Coleman, P. Prognon, P. Lopez-Mahia, J. Chem. Soc. Perkin Trans. 2 1996, 955-959. Nevertheless, the latter result is difficult to analyze for extracting the extrapolated associative behavior in pure water, since specific solvation of 1β by acetonitrile is expected to occur in water-acetonitrile mixtures, even at low acetonitrile molar fractions.
-
(1996)
J. Chem. Soc. Perkin Trans. 2
, pp. 955-959
-
-
Eddaoudi, M.1
Coleman, A.W.2
Prognon, P.3
Lopez-Mahia, P.4
-
11
-
-
0038013474
-
-
For side-on arrangement see: A. Laschewsky, Adv. Mater. 1989, 1, 392-395.
-
(1989)
Adv. Mater.
, vol.1
, pp. 392-395
-
-
Laschewsky, A.1
-
13
-
-
0003881316
-
-
Wiley, New York, Chichester, Brisbane, Toronto, Singapore
-
K. A. Connors, in Binding Constants The Measurement of Molecular Complex Stability, Wiley, New York, Chichester, Brisbane, Toronto, Singapore, 1987.
-
(1987)
Binding Constants the Measurement of Molecular Complex Stability
-
-
Connors, K.A.1
-
14
-
-
85033966206
-
-
note
-
No splitting of signals that could appear under the assumption of a slow exchange regime has been observed in the course of the present study.
-
-
-
-
15
-
-
85033951849
-
-
note
-
2 ≈ 6.5 ppm that is in satisfactory agreement in sign and order of magnitude with the expected shielding effect from the benzene ring current.
-
-
-
-
16
-
-
0032569193
-
-
and references therein
-
B. Hamelin, L. Jullien, C. Derouet, C. Hervé du Penhoat, P. Berthault, J. Am. Chem. Soc. 1998, 120, 8438-8447, and references therein.
-
(1998)
J. Am. Chem. Soc.
, vol.120
, pp. 8438-8447
-
-
Hamelin, B.1
Jullien, L.2
Derouet, C.3
Hervé Du Penhoat, C.4
Berthault, P.5
-
17
-
-
0342684436
-
-
M. Hricovini, M. Guerrini, G. Torri, B. Casu, Carbohydr. Res. 1997, 300, 69-76.
-
(1997)
Carbohydr. Res.
, vol.300
, pp. 69-76
-
-
Hricovini, M.1
Guerrini, M.2
Torri, G.3
Casu, B.4
-
18
-
-
85033965851
-
-
note
-
The corresponding VPO experiments are not reliable at low concentration due to impurities in the solvents. Pure chloroform is unstable and known to contain hydrogen chloride, whereas THF contains water; this would affect the measurements in these solvents.
-
-
-
-
20
-
-
85033959871
-
-
note
-
Slowly is taken here as the timescale of elution: 1-10 min.
-
-
-
-
21
-
-
0029219233
-
-
The group of A. Coleman has already extensively investigated the complexing properties of 1β at the air-water interface. For an example of ion complexation, see: M. Eddaoudi, A. Baszkin, H. Parrot-Lopez, M. M. Boissonade, A. W. Coleman, Langmuir 1995, 11, 13-15; for an example of complexation of neutral organic molecules, see: M. Eddaoudi, A. W. Coleman, A. Baszkin, Supramol. Chem. 1997, 8, 177-180.
-
(1995)
Langmuir
, vol.11
, pp. 13-15
-
-
Eddaoudi, M.1
Baszkin, A.2
Parrot-Lopez, H.3
Boissonade, M.M.4
Coleman, A.W.5
-
22
-
-
0040290756
-
-
The group of A. Coleman has already extensively investigated the complexing properties of 1β at the air-water interface. For an example of ion complexation, see: M. Eddaoudi, A. Baszkin, H. Parrot-Lopez, M. M. Boissonade, A. W. Coleman, Langmuir 1995, 11, 13-15; for an example of complexation of neutral organic molecules, see: M. Eddaoudi, A. W. Coleman, A. Baszkin, Supramol. Chem. 1997, 8, 177-180.
-
(1997)
Supramol. Chem.
, vol.8
, pp. 177-180
-
-
Eddaoudi, M.1
Coleman, A.W.2
Baszkin, A.3
-
23
-
-
0002470677
-
-
Y. Kawabata, M. Matsumoto, M. Tanaka, H. Takahashi, Y. Irinatsu, S. Tamura, W. Tagaki, H. Nakahara, K. Fukuda, Chem. Lett. 1986, 1933-1934.
-
(1986)
Chem. Lett.
, pp. 1933-1934
-
-
Kawabata, Y.1
Matsumoto, M.2
Tanaka, M.3
Takahashi, H.4
Irinatsu, Y.5
Tamura, S.6
Tagaki, W.7
Nakahara, H.8
Fukuda, K.9
-
24
-
-
0001733502
-
-
S. Taneva, K. Ariga, W. Tagaki, Y. Okahata, J. Coll. Interface Sci. 1989, 131, 561-566.
-
(1989)
J. Coll. Interface Sci.
, vol.131
, pp. 561-566
-
-
Taneva, S.1
Ariga, K.2
Tagaki, W.3
Okahata, Y.4
-
25
-
-
0026750903
-
-
H. Parrot-Lopez, C.-C. Ling, P. Zhang, A. Baszkin, G. Albrecht, C. De Rango, A. Coleman, J. Am. Chem. Soc. 1992, 114, 5479-5481.
-
(1992)
J. Am. Chem. Soc.
, vol.114
, pp. 5479-5481
-
-
Parrot-Lopez, H.1
Ling, C.-C.2
Zhang, P.3
Baszkin, A.4
Albrecht, G.5
De Rango, C.6
Coleman, A.7
-
26
-
-
0001069908
-
-
M. H. Greenhall, P. Lukes, R. Kataky, N. E. Agbor, J. P. S. Badyal, J. Yarwood, D. Parker, M. C. Petty, Langmuir 1995, 11, 3997-4000.
-
(1995)
Langmuir
, vol.11
, pp. 3997-4000
-
-
Greenhall, M.H.1
Lukes, P.2
Kataky, R.3
Agbor, N.E.4
Badyal, J.P.S.5
Yarwood, J.6
Parker, D.7
Petty, M.C.8
-
27
-
-
21344494299
-
-
A. Kaselouri, M. Munoz, H. Parrot-Lopez, A. W. Coleman, Pol. J. Chem. 1993, 67, 1981-1985.
-
(1993)
Pol. J. Chem.
, vol.67
, pp. 1981-1985
-
-
Kaselouri, A.1
Munoz, M.2
Parrot-Lopez, H.3
Coleman, A.W.4
-
28
-
-
0008518049
-
-
I. Nicolis, A. W. Coleman, P. Charpin, F. Villain, P. Zhang, C. C. Ling, C. De Rango, J. Am. Chem. Soc. 1993, 115, 11596-11597.
-
(1993)
J. Am. Chem. Soc.
, vol.115
, pp. 11596-11597
-
-
Nicolis, I.1
Coleman, A.W.2
Charpin, P.3
Villain, F.4
Zhang, P.5
Ling, C.C.6
De Rango, C.7
-
30
-
-
0043081049
-
-
b) M. van der Auweraer, C. Catry, L. F. Chi, O. Karthaus, W. Knoll, H. Ringsdorf, M. Sawodny, C. Urban, Thin Solid Films 1992, 210/211, 39-41;
-
(1992)
Thin Solid Films
, vol.210-211
, pp. 39-41
-
-
Van Der Auweraer, M.1
Catry, C.2
Chi, L.F.3
Karthaus, O.4
Knoll, W.5
Ringsdorf, H.6
Sawodny, M.7
Urban, C.8
-
32
-
-
0001201229
-
-
d) J. Fang, M. Dennin, C. M. Knobler, Yu. K. Godovsky, N. N. Makarova, H. Yokoyama, J. Phys. Chem. B 1997, 101, 3147-3154;
-
(1997)
J. Phys. Chem. B
, vol.101
, pp. 3147-3154
-
-
Fang, J.1
Dennin, M.2
Knobler, C.M.3
Godovsky, Yu.K.4
Makarova, N.N.5
Yokoyama, H.6
-
33
-
-
0000886681
-
-
e) J. A. Schröter, R. Plehnert, C. Tschierske, Langmuir 1997, 13, 796-800.
-
(1997)
Langmuir
, vol.13
, pp. 796-800
-
-
Schröter, J.A.1
Plehnert, R.2
Tschierske, C.3
-
34
-
-
0040290751
-
-
a) S. Alexandre, A. W. Coleman, A. Kasselouri, J. M. Valleton, Thin Solid Films 1996, 284/285, 735-768;
-
(1996)
Thin Solid Films
, vol.284-285
, pp. 735-768
-
-
Alexandre, S.1
Coleman, A.W.2
Kasselouri, A.3
Valleton, J.M.4
-
35
-
-
0008682109
-
-
b) J. Majewski, R. Edgar, R. Popovitz-Biro, K. Kjaer, W. Bouwman, J. Als-Nielsen, M. Lahav, L. Leiserowitz, Angew. Chem. 1995, 107, 707-711; Angew. Chem. Int. Ed. Engl. 1995, 34, 649-652.
-
(1995)
Angew. Chem.
, vol.107
, pp. 707-711
-
-
Majewski, J.1
Edgar, R.2
Popovitz-Biro, R.3
Kjaer, K.4
Bouwman, W.5
Als-Nielsen, J.6
Lahav, M.7
Leiserowitz, L.8
-
36
-
-
33748241189
-
-
b) J. Majewski, R. Edgar, R. Popovitz-Biro, K. Kjaer, W. Bouwman, J. Als-Nielsen, M. Lahav, L. Leiserowitz, Angew. Chem. 1995, 107, 707-711; Angew. Chem. Int. Ed. Engl. 1995, 34, 649-652.
-
(1995)
Angew. Chem. Int. Ed. Engl.
, vol.34
, pp. 649-652
-
-
-
37
-
-
85033951124
-
-
note
-
In particular, the agreement suggests that the lifetime of the solvent molecules on cyclodextrin surfaces exceeds several nanoseconds. Otherwise, slip boundary conditions would apply and the friction coefficient for rotation would be zero. See for instance the ref. [4].
-
-
-
-
38
-
-
85033966943
-
-
note
-
If one takes a larger diameter D as a mean to increase the friction at the ends of the cylinder, the equilibrium distance d between 1β interacting units is strongly reduced. For instance with D = 2.2 nm, one obtains a minimum of F at L = 3.3 nm that gives d = 0.7 nm.
-
-
-
-
39
-
-
0026694737
-
-
The different behaviour of 3β can be explained by the absence of hydroxyl groups on the secondary face of the cyclodextrin. When they exist, the latter hydroxyl groups form an intramolecular network of hydrogen bonds that gives its rigidity to the cyclodextrin skeleton, see for instance: K. B. Lipkowitz, K. Green, J. Yang, Chirality 1992, 4, 205-215; K. B. Lipkowitz, J. Org. Chem. 1991, 56, 6357-6367. Consequently, 1β and 2β should exhibit similar cyclodextrin backbones and thus close arrangement of 6-glucose substituents whereas the primary face of 3β could be arranged in a different way.
-
(1992)
Chirality
, vol.4
, pp. 205-215
-
-
Lipkowitz, K.B.1
Green, K.2
Yang, J.3
-
40
-
-
0026318346
-
-
The different behaviour of 3β can be explained by the absence of hydroxyl groups on the secondary face of the cyclodextrin. When they exist, the latter hydroxyl groups form an intramolecular network of hydrogen bonds that gives its rigidity to the cyclodextrin skeleton, see for instance: K. B. Lipkowitz, K. Green, J. Yang, Chirality 1992, 4, 205-215; K. B. Lipkowitz, J. Org. Chem. 1991, 56, 6357-6367. Consequently, 1β and 2β should exhibit similar cyclodextrin backbones and thus close arrangement of 6-glucose substituents whereas the primary face of 3β could be arranged in a different way.
-
(1991)
J. Org. Chem.
, vol.56
, pp. 6357-6367
-
-
Lipkowitz, K.B.1
-
41
-
-
85033958048
-
-
note
-
As already underlined, we suppose that the hydroxyl group at the C3 glucose position is engaged in an intramolecular hydrogen bond with the oxygen at the C′2 position of the neighbouring glucose unit. Consequently, we do not take into account the corresponding hydroxyl groups for discussing the dimerization process.
-
-
-
-
42
-
-
0001355156
-
-
This value compares well with other systems with hydrogen bond interactions. See for instance: H.-J. Schneider, Angew. Chem. 1991, 103, 1419-1439; Angew. Chem. Int. Ed. Engt. 1991, 30, 1417-1436.
-
(1991)
Angew. Chem.
, vol.103
, pp. 1419-1439
-
-
Schneider, H.-J.1
-
43
-
-
0026054712
-
-
This value compares well with other systems with hydrogen bond interactions. See for instance: H.-J. Schneider, Angew. Chem. 1991, 103, 1419-1439; Angew. Chem. Int. Ed. Engt. 1991, 30, 1417-1436.
-
(1991)
Angew. Chem. Int. Ed. Engt.
, vol.30
, pp. 1417-1436
-
-
-
44
-
-
0346542305
-
-
a) J. S. Boger, R. J. Corcoran, J. M. Lehn, Helv. Chim. Acta. 1978, 61, 2190-2218;
-
(1978)
Helv. Chim. Acta
, vol.61
, pp. 2190-2218
-
-
Boger, J.S.1
Corcoran, R.J.2
Lehn, J.M.3
-
45
-
-
0039698923
-
-
b) P. Ellwood, C. M. Spencer, N. Spencer, J. F. Stoddart, R. Zarzycki, J. Inclusion Phenom. Mol. Recogn. 1992, 12, 121-150.
-
(1992)
J. Inclusion Phenom. Mol. Recogn.
, vol.12
, pp. 121-150
-
-
Ellwood, P.1
Spencer, C.M.2
Spencer, N.3
Stoddart, J.F.4
Zarzycki, R.5
-
46
-
-
0003440781
-
-
Academic Press, London, San Diego, New York, Boston, Sydney, Tokyo, Toronto
-
J. Israelachvili, in Intermolecular and Surface Forces, 2nd ed., Academic Press, London, San Diego, New York, Boston, Sydney, Tokyo, Toronto, 1991.
-
(1991)
Intermolecular and Surface Forces, 2nd Ed.
-
-
Israelachvili, J.1
-
50
-
-
0001630204
-
-
T. Steiner, S. A. Mason, W. Saenger, J. Am. Chem. Soc. 1991, 113, 5676-5687.
-
(1991)
J. Am. Chem. Soc.
, vol.113
, pp. 5676-5687
-
-
Steiner, T.1
Mason, S.A.2
Saenger, W.3
-
51
-
-
85033973580
-
-
note
-
To calculate the simulated NOEF, the average over the seven glucose residues present in the β-cyclodextrin backbone can be performed either by averaging the θ angles, the respective spectral density functions, or the NOEF. Whichever the way which is chosen, the averaging yields essentially the same results at the precision of the present experimental determination.
-
-
-
-
53
-
-
0025139834
-
-
W. Eimer, J. R. Williamson, S. G. Boxer, R. Pecora, Biochemistry 1990, 29, 799-811.
-
(1990)
Biochemistry
, vol.29
, pp. 799-811
-
-
Eimer, W.1
Williamson, J.R.2
Boxer, S.G.3
Pecora, R.4
-
54
-
-
4243642135
-
-
M. M. Tirado, C. L. Martinez, J. Garcia De La Torre, J. Chem. Phys. 1984, 81, 2047-2052.
-
(1984)
J. Chem. Phys.
, vol.81
, pp. 2047-2052
-
-
Tirado, M.M.1
Martinez, C.L.2
Garcia De La Torre, J.3
-
56
-
-
0001753999
-
-
E. Swanson, C. Teller, D. C. De Haën, J. Chem. Phys. 1978, 68, 5097-5102.
-
(1978)
J. Chem. Phys.
, vol.68
, pp. 5097-5102
-
-
Swanson, E.1
Teller, C.2
De Haën, D.C.3
|