메뉴 건너뛰기




Volumn 54, Issue 6, 1997, Pages 549-566

An efficient model development strategy for bioprocesses based on neural networks in macroscopic balances

Author keywords

hybrid models; neural networks; penicillin G

Indexed keywords

MATHEMATICAL MODELS; NEURAL NETWORKS; REAL TIME SYSTEMS;

EID: 0343052706     PISSN: 00063592     EISSN: None     Source Type: Journal    
DOI: 10.1002/(SICI)1097-0290(19970620)54:6<549::AID-BIT6>3.0.CO;2-J     Document Type: Article
Times cited : (54)

References (25)
  • 1
    • 0027599793 scopus 로고
    • Universal approximation bounds for superpositions of a sigmoidal function
    • Barron, A. R. 1993. Universal approximation bounds for superpositions of a sigmoidal function. IEEE Trans. Inf. Theory 39: 930-945.
    • (1993) IEEE Trans. Inf. Theory , vol.39 , pp. 930-945
    • Barron, A.R.1
  • 2
    • 0027186125 scopus 로고
    • Control of a bioreactor using a neural network
    • Chtourou, M., Njim, K., Roux, G., Dahlou, B. 1993. Control of a bioreactor using a neural network. Bioproc. Eng. 8: 251-254.
    • (1993) Bioproc. Eng. , vol.8 , pp. 251-254
    • Chtourou, M.1    Njim, K.2    Roux, G.3    Dahlou, B.4
  • 3
    • 0028969090 scopus 로고
    • Dynamic modeling of the activated sludge process: Improving prediction using neural networks
    • Côte, M., Grandjean, B. P. A., Lessard, P., Thibault, J. 1995. Dynamic modeling of the activated sludge process: improving prediction using neural networks. Water Res. 29: 995-1004.
    • (1995) Water Res. , vol.29 , pp. 995-1004
    • Côte, M.1    Grandjean, B.P.A.2    Lessard, P.3    Thibault, J.4
  • 4
    • 0024861871 scopus 로고
    • Approximating by superposition of sigmoidal function
    • Cybenko, G. 1989. Approximating by superposition of sigmoidal function. Math. Control Signals Syst. 2: 303-314.
    • (1989) Math. Control Signals Syst. , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 6
    • 0028816061 scopus 로고    scopus 로고
    • Kinetic analysis of the effect of product removal on the hydrolysis of penicillin G by immobilised penicillin acylase
    • Duan, G., Chen, J. Y. 1996. Kinetic analysis of the effect of product removal on the hydrolysis of penicillin G by immobilised penicillin acylase. Proc. Biochem. 31: 27-30.
    • (1996) Proc. Biochem. , vol.31 , pp. 27-30
    • Duan, G.1    Chen, J.Y.2
  • 7
    • 0026477829 scopus 로고
    • Artificial neural networks in bioprocess state estimation
    • Karim, M. N., Rivera, S. L. 1992. Artificial neural networks in bioprocess state estimation. Adv. Biochem. Eng./Biotechnol. 46: 1-31.
    • (1992) Adv. Biochem. Eng./Biotechnol. , vol.46 , pp. 1-31
    • Karim, M.N.1    Rivera, S.L.2
  • 8
    • 0028840869 scopus 로고
    • GMP - good modeling practice: An essential component of good manufacturing practice
    • Kell, D. B., Sonnleitner, B. 1995. GMP - good modeling practice: an essential component of good manufacturing practice. Trends Biotechnol. 13: 481-492.
    • (1995) Trends Biotechnol. , vol.13 , pp. 481-492
    • Kell, D.B.1    Sonnleitner, B.2
  • 9
    • 0019912818 scopus 로고
    • Reaction kinetics and mechanisms of penicillin amidase: A comparative study by computer simulation
    • Lee, S. B., Dewey, D., Ryu, D. Y. 1982. Reaction kinetics and mechanisms of penicillin amidase: a comparative study by computer simulation. Enzyme Microb. Technol. 4: 35-38.
    • (1982) Enzyme Microb. Technol. , vol.4 , pp. 35-38
    • Lee, S.B.1    Dewey, D.2    Ryu, D.Y.3
  • 11
    • 0028484517 scopus 로고
    • Neural-network contributions in biotechnology
    • Montague, G., Morris, J. 1994. Neural-network contributions in biotechnology. Trends Biotechnol. 12: 312-324.
    • (1994) Trends Biotechnol. , vol.12 , pp. 312-324
    • Montague, G.1    Morris, J.2
  • 12
    • 0026806616 scopus 로고
    • A hybrid neural network - first principles approach to process modeling
    • Psichogios, D. C. Ungar, L. H. 1992. A hybrid neural network - first principles approach to process modeling. AIChE J. 38: 1499-1511.
    • (1992) AIChE J. , vol.38 , pp. 1499-1511
    • Psichogios, D.C.1    Ungar, L.H.2
  • 13
    • 0002361928 scopus 로고
    • Determining microbial kinetic parameters using non-linear regression analysis. Advantages and limitations in microbial ecology
    • K. C. Marshall (ed.), Plenum Press, New York
    • Robinson, J. A. 1985. Determining microbial kinetic parameters using non-linear regression analysis. Advantages and limitations in microbial ecology, pp. 61-114. In: K. C. Marshall (ed.), Advances in microbial ecology, vol. 8. Plenum Press, New York.
    • (1985) Advances in Microbial Ecology , vol.8 , pp. 61-114
    • Robinson, J.A.1
  • 14
    • 0028356096 scopus 로고
    • Bioprocess optimization and control: Application of hybrid modeling
    • Schubert, J., Simutis R., Dors, M., Havlik, I., Lübbert, A. 1994. Bioprocess optimization and control: application of hybrid modeling. J. Biotechnol. 35: 51-68.
    • (1994) J. Biotechnol. , vol.35 , pp. 51-68
    • Schubert, J.1    Simutis, R.2    Dors, M.3    Havlik, I.4    Lübbert, A.5
  • 18
    • 0029253483 scopus 로고
    • Random activation weights neural net (RAWN) for fast non-iterative training
    • Te Braake, H. A. B., Van Straten, G. 1995. Random activation weights neural net (RAWN) for fast non-iterative training. Engng. Applic. Artif. Intell. 8: 71-80.
    • (1995) Engng. Applic. Artif. Intell. , vol.8 , pp. 71-80
    • Te Braake, H.A.B.1    Van Straten, G.2
  • 20
    • 0025701454 scopus 로고
    • On-line prediction of fermentation variables using neural networks
    • Thibault, J., Van Breusegem, V. C., Cheruy, A. 1990. On-line prediction of fermentation variables using neural networks. Biotechnol. Bioeng. 43: 1041-1048.
    • (1990) Biotechnol. Bioeng. , vol.43 , pp. 1041-1048
    • Thibault, J.1    Van Breusegem, V.C.2    Cheruy, A.3
  • 21
    • 0028484335 scopus 로고
    • Modeling chemical processes using prior knowledge and neural networks
    • Thompson, M. L. Kramer, M. A. 1994. Modeling chemical processes using prior knowledge and neural networks. AIChE J. 40: 1328-1340.
    • (1994) AIChE J. , vol.40 , pp. 1328-1340
    • Thompson, M.L.1    Kramer, M.A.2
  • 22
    • 0030406831 scopus 로고    scopus 로고
    • A strategy for dynamic process modeling based on neural networks in macroscopic balances
    • van Can, H. J. L., Te Braake, H. A. B., Hellinga, C., Luyben, K. C. A. M., Heijnen, J. J. 1996. A strategy for dynamic process modeling based on neural networks in macroscopic balances. AIChE. J. 42: 3403-3418.
    • (1996) AIChE. J. , vol.42 , pp. 3403-3418
    • Van Can, H.J.L.1    Te Braake, H.A.B.2    Hellinga, C.3    Luyben, K.C.A.M.4    Heijnen, J.J.5
  • 23
    • 84985730471 scopus 로고
    • Conversion of benzylpenicillin to 6-aminopenicillanic acid in a batch reactor and continuous feed stirred tank reactor using immobilized penicillin amidase
    • Warburton, D., Dunnill, P., Lilly, M. D. 1973. Conversion of benzylpenicillin to 6-aminopenicillanic acid in a batch reactor and continuous feed stirred tank reactor using immobilized penicillin amidase. Biotechnol. Bioeng. 15: 13-25.
    • (1973) Biotechnol. Bioeng. , vol.15 , pp. 13-25
    • Warburton, D.1    Dunnill, P.2    Lilly, M.D.3
  • 24
    • 0029199640 scopus 로고    scopus 로고
    • On data-based modeling techniques for fermentation processes
    • Warnes, M. R., Glassey, J., Montague, G. A., Kara, B. 1996. On data-based modeling techniques for fermentation processes. Proc. Biochem. 31: 147-155.
    • (1996) Proc. Biochem. , vol.31 , pp. 147-155
    • Warnes, M.R.1    Glassey, J.2    Montague, G.A.3    Kara, B.4
  • 25
    • 0028397699 scopus 로고
    • A prototype neural network supervised control system for Bacillus thuringiensis fermentations
    • Zhang, Q., Reid, F. R., Lichtfield, J. B., Ren, J., Chang, S. -W. 1994. A prototype neural network supervised control system for Bacillus thuringiensis fermentations. Biotechnol Bioeng. 43: 483-489.
    • (1994) Biotechnol Bioeng. , vol.43 , pp. 483-489
    • Zhang, Q.1    Reid, F.R.2    Lichtfield, J.B.3    Ren, J.4    Chang, S.W.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.