메뉴 건너뛰기




Volumn 34, Issue 10, 1999, Pages 636-642

Validation procedures in radiologic diagnostic models: Neural network and logistic regression

Author keywords

Neural networks; Receiver operating characteristic curve; Skull, neoplasms; Statistics, logistic regression; Statistics, resampling

Indexed keywords

ADOLESCENT; ADULT; AGED; ALGORITHM; ARTICLE; ARTIFICIAL NEURAL NETWORK; CALVARIA; CHILD; COMPUTER ASSISTED TOMOGRAPHY; FEMALE; HUMAN; INFANT; MAJOR CLINICAL STUDY; MALE; MODEL; PRIORITY JOURNAL; RECEIVER OPERATING CHARACTERISTIC; REGRESSION ANALYSIS; SKULL DISEASE; VALIDATION PROCESS;

EID: 0032871772     PISSN: 00209996     EISSN: None     Source Type: Journal    
DOI: 10.1097/00004424-199910000-00005     Document Type: Article
Times cited : (13)

References (22)
  • 1
    • 0027512684 scopus 로고
    • Artificial neural networks in mammography: Application to decision making in the diagnosis of breast cancer
    • Wu Y, Giger ML, Doi K, Vyborny CJ, Schmidt RA, Metz CE. Artificial neural networks in mammography: Application to decision making in the diagnosis of breast cancer. Radiology 1993;187:81-87.
    • (1993) Radiology , vol.187 , pp. 81-87
    • Wu, Y.1    Giger, M.L.2    Doi, K.3    Vyborny, C.J.4    Schmidt, R.A.5    Metz, C.E.6
  • 2
    • 0030297904 scopus 로고    scopus 로고
    • Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes
    • Tu J. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J Clin Epidemiol 1996;49:1225-1331.
    • (1996) J Clin Epidemiol , vol.49 , pp. 1225-1331
    • Tu, J.1
  • 3
    • 0021857146 scopus 로고
    • Regression models for prognostic prediction: Advantages, problems and suggested solutions
    • Harrell F, Lee K, Matchar D, Reichert T. Regression models for prognostic prediction: Advantages, problems and suggested solutions. Cancer Treat Rep 1985;69:1071-1077.
    • (1985) Cancer Treat Rep , vol.69 , pp. 1071-1077
    • Harrell, F.1    Lee, K.2    Matchar, D.3    Reichert, T.4
  • 4
    • 0028878836 scopus 로고
    • Use of neural network and a multiple regression model to predict histologic grade of astrocytoma from MRI appearances
    • Christy P, Tervonen O, Scheithauer B, Forbes G. Use of neural network and a multiple regression model to predict histologic grade of astrocytoma from MRI appearances. Neuroradiology 1995;37: 89-93.
    • (1995) Neuroradiology , vol.37 , pp. 89-93
    • Christy, P.1    Tervonen, O.2    Scheithauer, B.3    Forbes, G.4
  • 6
    • 0342803559 scopus 로고    scopus 로고
    • Focal calvarial bone lesions. Comparison of logistic regression and neural network
    • Arana E, Martí-Bonmatí L, Paredes R, Bautista D. Focal calvarial bone lesions. Comparison of logistic regression and neural network. Invest Radiol 1998;33:738-745.
    • (1998) Invest Radiol , vol.33 , pp. 738-745
    • Arana, E.1    Martí-Bonmatí, L.2    Paredes, R.3    Bautista, D.4
  • 7
    • 0029840811 scopus 로고    scopus 로고
    • Neural networks in clinical medicine
    • Penny W, Frost D. Neural networks in clinical medicine. Med Decis Making 1996;16:386-398.
    • (1996) Med Decis Making , vol.16 , pp. 386-398
    • Penny, W.1    Frost, D.2
  • 8
    • 0026775675 scopus 로고
    • Review of neural network application in medical imaging and signal processing
    • Miller A, Blott B. Review of neural network application in medical imaging and signal processing. Med Biol Eng Comput 1992;30: 449-464.
    • (1992) Med Biol Eng Comput , vol.30 , pp. 449-464
    • Miller, A.1    Blott, B.2
  • 10
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • Hanley J, McNeil B. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982;143:29-36.
    • (1982) Radiology , vol.143 , pp. 29-36
    • Hanley, J.1    McNeil, B.2
  • 11
    • 0020524559 scopus 로고
    • A method of comparing the areas under receiver operating characteristic curves derived from the same cases
    • Hanley J, McNeil B. A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 1983;148:839-843.
    • (1983) Radiology , vol.148 , pp. 839-843
    • Hanley, J.1    McNeil, B.2
  • 12
    • 0031536511 scopus 로고    scopus 로고
    • Cross-validation and the bootstrap: Estimating the error rate of a prediction rule
    • Efron B, Tibshirani R. Cross-validation and the bootstrap: Estimating the error rate of a prediction rule. J Am Stat Assoc 1997;92:548-560.
    • (1997) J Am Stat Assoc , vol.92 , pp. 548-560
    • Efron, B.1    Tibshirani, R.2
  • 14
    • 0038812024 scopus 로고    scopus 로고
    • Development of statistical discriminant mathematical programming model via resampling estimation techniques
    • Ziari H, Leatham D, Ellinger P. Development of statistical discriminant mathematical programming model via resampling estimation techniques. Am J Agr Econ 1997;79:1352-1362.
    • (1997) Am J Agr Econ , vol.79 , pp. 1352-1362
    • Ziari, H.1    Leatham, D.2    Ellinger, P.3
  • 15
    • 0030995524 scopus 로고    scopus 로고
    • The effect of data sampling on the performance evaluation of artificial neural networks in medical diagnosis
    • Tourassi GD, Floyd CE. The effect of data sampling on the performance evaluation of artificial neural networks in medical diagnosis. Med Decis Making 1997;17:186-192.
    • (1997) Med Decis Making , vol.17 , pp. 186-192
    • Tourassi, G.D.1    Floyd, C.E.2
  • 17
    • 0001552995 scopus 로고
    • Cross-validation, the jacknife, and the bootstrap: Excess error estimation in forward logistic regression
    • Gong G. Cross-validation, the jacknife, and the bootstrap: excess error estimation in forward logistic regression. J Am Stat Assoc 1986; 81:108-113.
    • (1986) J Am Stat Assoc , vol.81 , pp. 108-113
    • Gong, G.1
  • 19
    • 0030038527 scopus 로고    scopus 로고
    • Neural networks in ventilation-perfusion imaging. Part I. Effects of interpretative criteria and network architecture
    • Fisher R, Scott J, Palmer E. Neural networks in ventilation-perfusion imaging. Part I. Effects of interpretative criteria and network architecture. Radiology 1996;198:699-706.
    • (1996) Radiology , vol.198 , pp. 699-706
    • Fisher, R.1    Scott, J.2    Palmer, E.3
  • 21
    • 84950461478 scopus 로고
    • Estimating the error rate of a prediction rule: Improvement on cross-validation
    • Efron B. Estimating the error rate of a prediction rule: Improvement on cross-validation. J Am Stat Assoc 1983;78:316-330.
    • (1983) J Am Stat Assoc , vol.78 , pp. 316-330
    • Efron, B.1
  • 22
    • 0000372206 scopus 로고
    • Bayesian model comparison and backprop nets
    • Moody J, Hanson S, Lippman R, eds. San Mateo: Morgan Kaufmann
    • MacKay DJC. Bayesian model comparison and backprop nets. In: Moody J, Hanson S, Lippman R, eds. Advances in neural information processing systems 4. San Mateo: Morgan Kaufmann, 1992: 839-846.
    • (1992) Advances in Neural Information Processing Systems 4 , pp. 839-846
    • MacKay, D.J.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.